Published online by Cambridge University Press: 01 February 2011
The materials properties and resistance switching characteristics of hafnium oxide-based binary oxide were investigated for next generation memory device application. A nonstoichometric hafnium oxide (HfOx) film with a mixture structure of monoclinic and tetragonal phase and some metallic Hf-Hf bonds on TiN/Si were prepared by atomic layer chemical vapor deposition (ALCVD). Resistance random access memory devices consisting of Pt/HfOx/TiN/Si with low power operation (< 0.4 mW) and reset current (< 100 mA) were fabricated. The resistance ratio of high resistance state to low resistance state maintains 100∼1000 and after 1000 cycles of repetitively switching. A 1-nm-thick Al2O3 film in the interface between top electrode and HfOx films, the Pt/Al2O3/HfOx/TiN/Si memory devices were found that soft-error of set and reset process often occurred. Interface states in the anode side play an important role in maintaining a stable resistive switching for HfOx-based memory devices.