Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T07:15:18.380Z Has data issue: false hasContentIssue false

Hierarchically Ordered Multi-Component Block Copolymer/Particle Nanocomposite Materials

Published online by Cambridge University Press:  01 February 2011

M. R. Bockstaller
Affiliation:
Dept. of Materials Science and Engineering, and Institute of Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
E. L. Thomas
Affiliation:
Dept. of Materials Science and Engineering, and Institute of Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
Get access

Abstract

This contribution reviews the structure formation processes that are observed in binary diblock copolymer/particle and ternary diblock copolymer/particle1/particle2 mixtures. The particle core size, the polymer domain spacing as well as the particle surface chemistry are shown to determine three distinct morphological types in particle/block copolymer composites, which is the preferential layer homogeneous distribution, the interfacial segregation and center alignment of the nanocrystals within one polymer domain. The different microstructural environments of the sequestered component that are implied by the respective particle distribution result in distinctively different optical properties of the composite and have important consequences for the prospects of metal nanocrystal/block copolymer composites as a platform for photonic crystal engineering. A detailed comparison between morphological studies and theoretical predictions will be presented that aims to better understand and control morphologies of structured cluster matter and its relation to the respective optical and mechanical properties of new microstructured composite materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Edrington, A. C.; Urbas, A. M.; DeRege, P.; Chen, X. C.; Swager, T. M.; Hadjichristidis, N.; Xendiou, M.; Fetters, L. J.; Joannopoulos, J. D.; Fink, Y.; Thomas, E. L. Adv. Mater. 2001, 13, 421424.Google Scholar
2. Urbas, A. M.; Maldovan, M.; Carter, C.; Yufa, N.; Thomas, E. L. Adv. Mater. 2002, 14, 18531856.Google Scholar
Bockstaller, M. R.; Thomas, E. L. J. Phys. Chem. B 2003, 107, 1001710024.Google Scholar
3. Brust, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801802.Google Scholar
4. Bockstaller, M. R.; Kolb, R.; Thomas, E. L. Adv. Mater. 2001, 13, 17831786.Google Scholar
5. Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 6265.Google Scholar
6. Bockstaller, M. R.; Lapetnikov, Y.; Margel, S.; Thomas, E. L. J. Am. Chem. Soc. 2003, 125, 52765277.Google Scholar
7. Smith, D. D.; Snow, L. A.; Sibille, L.; Ignont, E. J. Non-Cryst. Solids 2001, 285, 256263.Google Scholar
8. Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Science 2001, 292, 24692472.Google Scholar
9. Kim, J. U.; O'Shaughnessy, B. Phys. Rev. Lett. 2002, 89, 238301, 14.Google Scholar
10. Quinten, M. Z. Phys. B 1996, 101, 211217.Google Scholar
11. Ausloos, M.; Clippe, P.; Lucas, A. A.; Phys. Rev. B 1978, 18.Google Scholar
12. Vollmer, U.; Kreibig, U. Optical Properties of Metal Clusters; Springer–Verlag: Berlin Heidelberg New York, 1995; Vol. 1.Google Scholar
13. Palik, E. D. Handbook of Optical Constants; Academic Press, San Diego, 1998.Google Scholar