Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T07:30:39.227Z Has data issue: false hasContentIssue false

High Aspect Ratio Microstructures in LiNbO3 Produced by Ion Beam Enhanced Etching

Published online by Cambridge University Press:  26 February 2011

Frank Schrempel
Affiliation:
schrempe@pinet.uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, Jena, N/A, N/A, Germany
Thomas Gischkat
Affiliation:
gischkat@pinet.uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Germany
Holger Hartung
Affiliation:
hartung@iap.uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Angewande Physik, Germany
Ernst Bernhard Kley
Affiliation:
kley@iap.uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Angewande Physik, Germany
Werner Wesch
Affiliation:
Werner.Wesch@uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Germany
Andreas Tünnermann
Affiliation:
tuennermann@iap.uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Angewande Physik, Germany
Get access

Abstract

This work presents data on damage evolution, volume expansion and etching behavior of LiNbO3 irradiated with Ar+-ions as a function of irradiation and etching conditions. Single crystals of x- and z-cut LiNbO3 were irradiated at room temperature and 15 K using Ar-ions with energies between 60 and 600 keV and ion fluences between 5 × 1012 and 1 × 1015 cm-2. The damage formation investigated with RBS channeling analysis depends on the crystal cut as well as on the irradiation temperature. Irradiation of z-cut material at 300 K causes complete amorphization at 0.4 dpa (displacements per target atom). In contrast 0.27 dpa are sufficient to amorphize the x-cut LiNbO3. Irradiation at 15 K reduces the number of displacements per atom necessary for amorphization to 0.18 dpa. To study the etching behavior ∼500 nm thick amorphous layers were generated via multiple irradiations with Ar+-ions. Etching was performed in HF-solution of different concentration and at different temperatures. The influence of the irradiation and etching conditions on damage formation and etching of LiNbO3 is discussed. In conclusion, negligible etching of the perfect crystal, high etching rates and high contrast of Ion Beam Enhanced Etching (IBEE) allow the realization of high aspect ratio microstructures in LiNbO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Leech, P.W. and Ridgway, M.C., J. Vac. Sci. Technol. A17 (6), 3358 (1999).Google Scholar
2 Hines, D.S. and Williams, K.E., J. Vac. Sci. Technol. A20 (3), 1072 (2002).Google Scholar
3 Yin, S.Z., Microw. Opt. Technol. Lett. 22 (6), 396 (1999).Google Scholar
4 Lacour, F., Courjal, N., Bernal, M.B., Sabac, A.. Bainier, C. and Spajer, M., Opt. Mat. 27 (8), 1421 (2005).Google Scholar
5 Barry, I.E., Ross, G.W., Smith, P.G.R., Eason, R.W. and Cook, G., Mater. Lett. 37, 246 (1998); Appl. Phys. Lett. 74 (10), 1487 (1487).Google Scholar
6 Mizuuchi, K., Yamamoto, K. and Taniuchi, T., Electron. Lett. 26 (24), 1992 (1992).Google Scholar
7 Laurell, F., Webjorn, J., Arvidsson, G. and Holmberg, J., Lightwave, J. Technol. 10 (11), 1606 (1992).Google Scholar
8 Lee, H.J. and Shin, S.Y., Electron. Lett. 31 (4), 268 (1995).Google Scholar
9 Kawabe, M., Kubota, M., Masuda, K. and Namba, S., J. Vac. Sci. Technol. 15 (3), 1096 (1978).Google Scholar
10 Götz, G. and Karge, H., Nucl. Instr. and Meth. 209/210, 1079 (1983).Google Scholar
11 Ashby, C.I.H., Arnold, G.W. and Brannon, P.J., J. Appl. Phys. 65 (1) 93 (1989).Google Scholar
12 Shao, T.H., Jiang, X.Y., Shang, W. and Feng, X.Q., Mater. Sci. Eng. 10, 19 (1991).Google Scholar
13 Gill, D.M., Jacobson, D., White, C.A., Jones, C.D.W., Shi, Y., Minford, W.J. and Harris, A., J. Lightwave Technol. 22 (3), 887 (2004).Google Scholar
14 Schrempel, F., Gischkat, Th., Hartung, H., Kley, E.B. and Wesch, W., Nucl. Instr. and Meth. B, accepted (2006).Google Scholar
15 Destefanis, G.L., Townsend, P.D., Gailliard, J.P., Appl. Phys. Lett. 32 (1978) 293.Google Scholar
16 Wei, S., Jiang, X.-Y., Feng, X.-Q., Vacuum 39 (2-4) 287.Google Scholar
17 Townsend, P.D., Nucl. Instr. and Meth. B 46 (1990) 18.Google Scholar
18 Shi, B.-R., Wang, K.-M., Wang, Z.-L., Liu, X.-D., Xu, T.-B., Zhu, P.-R., J. Appl. Phys. 74 (3) (1993) 1625.Google Scholar
19 Kling, A., Silva, M.F. da, Soares, J.C., Fichtner, P.F.P., Amaral, L., Zawislak, F., Nucl. Instr. and Meth. B 175–177 (2001) 394.Google Scholar
20 Meldrum, A., Boatner, L.A., Weber, W.J., Ewing, R.C., J. Nucl. Mat 300 (2002) 242.Google Scholar
21 Bentini, G.G., Bianconi, M., Correra, L., Chiarini, M., Mazzoldi, P., Sada, C., Argiolas, N., Bazzan, M., Guzzi, R., J. Appl. Phys. 96 (1) (2004) 242.Google Scholar
22 Breeger, B., Wendler, E., Trippensee, W., Schubert, Ch., Wesch, W., Nucl. Instr. and Meth. B 174 (2001) 199.Google Scholar
23 Gärtner, K., Nucl. Instr. and Meth. B 227 (2005) 522.Google Scholar
24 Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping and Range of Ions in Solids, Perga-mon, New York, 2003.Google Scholar