Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T20:57:46.067Z Has data issue: false hasContentIssue false

High Density Metal Oxide (ZnO) Nanopatterned Platforms for Electronic Applications

Published online by Cambridge University Press:  12 March 2013

Vignesh Suresh
Affiliation:
Department of Chemical and Biomolecular Engineering, National University of Singapore, Blk E5, 4 Engineering Drive 4, Singapore117576
Meiyu Stella Huang
Affiliation:
Department of Chemical and Biomolecular Engineering, National University of Singapore, Blk E5, 4 Engineering Drive 4, Singapore117576
Madapusi.P. Srinivasan*
Affiliation:
Department of Chemical and Biomolecular Engineering, National University of Singapore, Blk E5, 4 Engineering Drive 4, Singapore117576
Sivashankar Krishnamoorthy*
Affiliation:
Patterning and Fabrication group, Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 3, Research Link, Singapore117602
Get access

Abstract

Fabrication methodologies with high precision and tenability for nanostructures of metal and metal oxides are widely explored for engineering devices such as solar cells, sensors, non-volatile memories (NVM) etc. In this direction, metal and metal oxide nanopatterned arrays are the state-of-the-art platforms upon which the device structures are built where the tunable orderly arrangement of the nanostructures enhances the device performance. We describe here a coalition of fabrication protocols that employ block copolymer self-assembly and nanoimprint lithography (NIL) to obtain metal oxide nanopatterns with sub-100 nm spatial resolution. The protocols are easily scalable down to sub-50 nm and below.

Nanopatterned arrays of ZnO created by using NIL assisted templates through area selective atomic layer deposition (ALD) and radio frequency (RF) sputtering find application in NVM and photovoltaics. We have employed NIL that produced nanoporous polymer templates using Si molds derived from block copolymer lithography (BCL) for pattern transfer into ZnO. The resulting ZnO nanoarrays were highly dense (8.6 x 109 nanofeatures per cm2) exhibiting periodic feature to feature spacing and width that replicated the geometric attributes of the template. Such nanopatterns find application in NVM, where a change in the density and periodicity of the arrays influences the charge storage characteristics. The above assembly and patterning protocols were employed to fabricate metal-oxide-semiconductor (MOS) capacitor devices for investigating application in NVM. Patterned ZnO nanoarrays were used as charge storage centres for the MOS capacitor devices. Preliminary results upon investigating the flash memory performance showed good flat-band voltage hysteresis window at a relatively low operating voltage due to high charge trap density.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vayssieres, L., Adv. Mater. 15 (5), 464466 (2003).CrossRefGoogle Scholar
Ito, D., Jespersen, M. L. and Hutchison, J. E., ACS Nano 2 (10), 20012006 (2008).CrossRefGoogle Scholar
Fan, H. J., Lee, W., Hauschild, R., Alexe, M., Le Rhun, G., Scholz, R., Dadgar, A., Nielsch, K., Kalt, H., Krost, A., Zacharias, M. and Gösele, U., Small 2 (4), 561568 (2006).CrossRefGoogle Scholar
Lee, W., Alexe, M., Nielsch, K. and Gösele, U., Chem. Mater. 17 (13), 33253327 (2005).CrossRefGoogle Scholar
WangWang, , Summers, C. J. and Wang, Z. L., Nano Lett. 4 (3), 423426 (2004).CrossRefGoogle Scholar
Li, Y., Koshizaki, N. and Cai, W., Coord. Chem. Rev. 255 (3–4), 357373 (2011).CrossRefGoogle Scholar
Li, Y., Cai, W. and Duan, G., Chem. Mater. 20 (3), 615624 (2007).CrossRefGoogle Scholar
Chik, H., Liang, J., Cloutier, S. G., Kouklin, N. and Xu, J. M., Appl. Phys. Lett. 84 (17), 33763378 (2004).CrossRefGoogle Scholar
Yang, K. Y., Yoon, K. M., Choi, K. W. and Lee, H., Microelectron. Eng. 86 (11), 22282231 (2009).CrossRefGoogle Scholar
Jung, M.-H. and Lee, H., Nanoscale Research Letters 6 (1), 159 (2011).CrossRefGoogle Scholar
Kim, T. U., Kim, J. A., Pawar, S. M., Moon, J. H. and Kim, J. H., Cryst. Growth Des. 10 (10), 42564261 (2010).CrossRefGoogle Scholar
Zhou, H. L., Chen, A., Jian, L. K., Ooi, K. F., Goh, G. K. L., Zang, K. Y. and Chua, S. J., J. Cryst. Growth 310 (15), 36263629 (2008).CrossRefGoogle Scholar
Kim, S. W., Ueda, M., Kotani, T. and Fujita, S., Jpn. J. Appl. Phys., Part 2 42 (6 A), L568L571 (2003).CrossRefGoogle Scholar
Li, L., Pan, S., Dou, X., Zhu, Y., Huang, X., Yang, Y., Li, G. and Zhang, L., J. Phys. Chem. C 111 (20), 72887291 (2007).CrossRefGoogle Scholar
Schmidt-Mende, L. and MacManus-Driscoll, J. L., Mater. Today 10, 4048 (2007).CrossRefGoogle Scholar
Salim, N. T., Aw, K. C., Gao, W. and Wright, B. E., Thin Solid Films 518 (1), 362365 (2009).CrossRefGoogle Scholar
Jung, J. H., Jin, J. Y., Lee, I., Kim, T. W., Roh, H. G. and Kim, Y. H., Appl. Phys. Lett. 88 (11), 112107–112103 (2006).CrossRefGoogle Scholar
Verbakel, F., Meskers, S. C. J. and Janssen, R. A. J., Appl. Phys. Lett. 89 (10), 102103 (2006).CrossRefGoogle Scholar
Sohn, J. I., Choi, S. S., Morris, S. M., Bendall, J. S., Coles, H. J., Hong, W. K., Jo, G., Lee, T. and Welland, M. E., Nano Lett. 10 (11), 43164320 (2010).CrossRefGoogle Scholar
Nandi, S. K., Chatterjee, S., Samanta, S. K., Bose, P. K. and Maiti, C. K., Bull. Mater. Sci. 26 (7), 693697 (2003).CrossRefGoogle Scholar
Chatterjee, S., Nandi, S. K., Maikap, S., Samanta, S. K. and Maiti, C. K., Semicond. Sci. Technol. 18 (2), 92 (2003).CrossRefGoogle Scholar
Suresh, V., Huang, M. S., Srinivasan, M. P. and Krishnamoorthy, S., J. Mater. Chem. 22 (41), 2187121877 (2012).CrossRefGoogle Scholar
Suresh, V., Meiyu Huang, S., Madapusi, S., Guan, C., Fan, H. J. and Krishnamoorthy, S., J. Phys. Chem. C (2012).Google Scholar
Dengyuan, S. and Baozeng, G., J. Phys. D: Appl. Phys. 42 (2), 025103 (2009).Google Scholar
Li, F., Kim, T. W., Dong, W. and Kim, Y. H., Thin Solid Films 517 (14), 39163918 (2009).CrossRefGoogle Scholar