Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T14:08:06.530Z Has data issue: false hasContentIssue false

High deposition rate of low resistive and transparent ZnO:Al on glass with an industrial moving belt APCVD reactor

Published online by Cambridge University Press:  20 June 2011

A. Illiberi*
Affiliation:
Netherlands Organization for Applied Scientific Research (TNO), PO Box 6235, 5600 HE Eindhoven, The Netherlands
B. Kniknie
Affiliation:
Netherlands Organization for Applied Scientific Research (TNO), PO Box 6235, 5600 HE Eindhoven, The Netherlands
H.L.A.H. Steijvers
Affiliation:
Netherlands Organization for Applied Scientific Research (TNO), PO Box 6235, 5600 HE Eindhoven, The Netherlands
D. Habets
Affiliation:
Netherlands Organization for Applied Scientific Research (TNO), PO Box 6235, 5600 HE Eindhoven, The Netherlands
P.J.P.M. Simons
Affiliation:
Netherlands Organization for Applied Scientific Research (TNO), PO Box 6235, 5600 HE Eindhoven, The Netherlands
E.H.A. Beckers
Affiliation:
Netherlands Organization for Applied Scientific Research (TNO), PO Box 6235, 5600 HE Eindhoven, The Netherlands
J. Van Deelan
Affiliation:
Netherlands Organization for Applied Scientific Research (TNO), PO Box 6235, 5600 HE Eindhoven, The Netherlands
*
*Corresponding author: andrea.illiberi@tno.nl
Get access

Abstract

Aluminum doped ZnOx (ZnOx:Al) films have been deposited on glass in an in-line industrialtype reactor by a metalorganic chemical vapor deposition process at atmospheric pressure. ZnOx:Al films can be grown at very high deposition rates of ~ 14 nm/s for a substrate speed from 150 mm/min to 500 mm/min. ZnOx:Al films are highly conductive (R < 9 Ohm/sq, for a film thickness above 1300 nm) and transparent in the visible range (> 80%). Amorphous silicon p-i-n solar cells have been grown on as deposited ZnOx:Al films, without optimizing the surface texturing of ZnOx:Al films to enhance light scattering. An initial efficiency of approximately 8% has been achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Granqvist, C.G., Solar Energy Mater. Solar Cells 91, 1529 (2007).Google Scholar
[2]Zinc Oxide: From Fundamental Properties Towards Novel Applications” , byKlinshirn, C. F., Meyer, B. K., Wang, A., Hoffmann, A. and Geurts, J., Springer Series in Mater. Sci. 120 (2010) .Google Scholar
[3] Illiberi, A., Sharma, K., Creatore, M., van de Sanden, M.C.M., Mater. Lett., 63, 1817 (2009)Google Scholar
[4] Banerjee, R., Ray, S., Basu, N., Batabyal, A.K. and Barua, A.K. J. Appl. Phys. 62, 912 (1987).Google Scholar
[5] Minami, T., Thin Solid Films, 516, 5822 (2008).Google Scholar
[6] Hu, J. and Gordon, R.G., J. Appl. Phys. 71, 880 (1992).Google Scholar
[7] Volintiru, I., Creatore, M., Kniknie, B.J., Spee, C.I.M.A. and van de Sanden, M.C.M., J. Appl. Phys. 102, 043709 (2007).Google Scholar
[8] Sittinger, V., Ruske, F., Werner, W., Szyszka, B., Rech, B., Hupkes, J., Schope, G., Stiebig, H., Thin Solid Films 496, 16 (2006).Google Scholar
[9] Matsubara, K., Fons, P., Iwata, K., Yamada, A., Sakurai, K., Tampo, H., Niki, S., Thin Solid Films 431, 369 (2003).Google Scholar
[10] Major, S., Banerjee, A. and Chopra, K.L., Thin Solid Films 108, 333 (1983).Google Scholar
[11] Zhu, M.W., Gong, J., Sun, C., Xia, J.H. and Jiang, X., J. App. Phys. 104, 073113 (2008).Google Scholar
[12] Hu, J., Gordon, R. G., J. Appl. Phys. 71, 880 (1992).Google Scholar
[13] Smith, F.T.J., App. Phys. Lett. 43, 1108(1983).Google Scholar
[14] Illiberi, A., Kniknie, B., Steijvers, H.L.A.H., Habets, D., Simons, P.J.P.M., Janssen, A.C., Beckers, E.H.A., van Deelen, J., Solar Energy Materials and Solar Cells doi:10.1016/j.solmat.2011.01.007 (2011).Google Scholar
[15] Hong, R.J., Jiang, X., Szyszka, B., Sittinger, V., Xu, S.H., Werner, W., Heide, G., J. Crystal Growth 253, 117(2003).Google Scholar