Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T01:17:12.510Z Has data issue: false hasContentIssue false

High Performance of Lithium Iron Phosphates for HEV with Quality Control Made by Magnetometry

Published online by Cambridge University Press:  26 February 2011

Christian M Julien
Affiliation:
Christian.Julien@insp.jussieu.fr, University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France, 33144274561, 33144273882
Alain Mauger
Affiliation:
mauger@ccr.jussieu.fr, CNRS, MPPU, 140 rue de Lourmel, Paris, 75015, France
Karim Zaghib
Affiliation:
karimz@ireq.ca, IREQ, 1800 Bd Lionel-Boulet, Varennes, J3X 1S1, Canada
François Gendron
Affiliation:
gendron@ccr.jussieu.fr, University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Get access

Abstract

Optimized LiFePO4 positive electrode for Li-ion batteries was obtained after severe control of the fundamental properties of material. The nanoscopic structure and magnetic properties of a series of carbon-coated LiFePO4 particles prepared under various conditions were analyzed with XRD, FTIR, Raman and SQUID magnetometry. We evaluate intrinsic and extrinsic properties. The existence of low content of nano-sized ferromagnetic particles was evidenced by magnetic measurements in samples grown from iron(II) oxalate; such ferromagnetic clusters do not exist in the optimised samples grown from FePO4(H2O)2. Other impurity phases such as Fe2P, Li3Fe2(PO4)3, FeP2O7 were also detected for particular conditions of preparation. The impact of the carbon coating on the electrochemical properties is reported. Li-ion cells show excellent cyclability after 200 cycles at 60 °C without iron dissolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B., J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
2. Huang, H., Yin, S-C, and Nazar, L. F., Electrochem. Solid State Lett. 4, A170 (2001).Google Scholar
3. Yang, S., Zavajil, P. Y., and Whittingham, M. S., Electrochem. Commun. 3, 505 (2001).Google Scholar
4. Hu, Y., Doeff, M. M., Kostecki, R., and Finones, R., J. Electrochem. Soc. 151, A1279 (2004).Google Scholar
5. Ravet, N., Chouinard, Y., Magnan, J.-F., Besner, S., Gauthier, M., and Armand, M., J. Power Sources 97–98, 503 (2001).Google Scholar
6. Ravet, N., Abouimrane, A., and Armand, M., Nat. Mater. 2, 702 (2003).Google Scholar
7. Ravet, N., Besner, S., Simoneau, M., Vallée, A., Armand, M., and Magnan, J.-F., US Patent 6,962,666 (2005).Google Scholar
8. Julien, C. M., Salah, A. Ait, Mauger, A. and Gendron, F., Ionics 12, 21 (2006).Google Scholar
9. Salah, A. Ait, Mauger, A., Gendron, F., and Julien, C. M., Mater. Sci. Eng. B 129, 232 (2006).Google Scholar
10. Salah, A. Ait, Mauger, A., Gendron, F., Julien, C. M., phys. status sol. (a) 203, R1 (2006).Google Scholar
11. Zaghib, K., Shim, J., Guerfi, A., Charest, P., Striebel, K. A., Electrochem. Solid State Lett. 8, A207 (2005).Google Scholar
12. Zaghib, K. and Armand, M., Canadian Patent CA 2,411,695 (2002).Google Scholar
13. Yamada, A., Chung, S. C., and Hinokuma, K., J. Electrochem. Soc. 148, A224 (2001).Google Scholar
14. Santoro, R. P. and Newnham, R. E., Acta Crystallogr. 22, 344 (1967).Google Scholar
15. Whittingham, M. S., Chem. Rev. 104, 4271 (2004).Google Scholar
16. Mauger, A., Ait-Salah, A., Massot, M., Gendron, F., Zaghib, K., and Julien, C. M., Extended Abstracts of the 210th Electrochem. Soc. Meeting, Cancun (2006), Abstr. 186.Google Scholar
17. Salah, A. Ait, Mauger, A., Zaghib, K., Goodenough, J. B., Ravet, N., Gauthier, M., Gendron, F., and Julien, C. M., J. Electrochem. Soc. 153, A1692 (2006).Google Scholar
18. Kostecki, R., Schnyder, B., Alliata, D., Song, X., Kinoshita, K., and Kotz, R., Thin Sol. Films 396, 36 (2001).Google Scholar
19. Geis, M. W. and Tamor, M. A., in Diamond and Diamondlike Carbon, The Encyclopedia of Applied Physics, vol.5, edited by Trigg, G. L. (VCH, New York, 1993), p. 1.Google Scholar
20. Ramsteiner, M. and Wagner, J., Appl. Phys. Lett. 51, 1355 (1987).Google Scholar
21. Tamor, M. A., and Vassell, W. C., J. Appl. Phys. 76, 3823 (1994).Google Scholar
22. Julien, C. M., Zaghib, K., Mauger, A., Massot, M., Ait-Salah, A., Selmane, M., and Gendron, F., J. Appl. Phys. 100, 63511 (2006).Google Scholar
23. Matthews, M. J., Bi, X. X., Dresselhaus, M. S., Endo, M., and Takahashi, T., Appl. Phys. Lett. 68, 1078 (1996).Google Scholar