Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T06:00:40.938Z Has data issue: false hasContentIssue false

High Pressure Synthesis of New Filled Skutterudites

Published online by Cambridge University Press:  21 March 2011

Hirotsugu Takizawa
Affiliation:
Department of Materials Chemistry, Tohoku University, Aoba-yama 07, Sendai, 980-8579, Japan
Ken-ichi Okazaki
Affiliation:
Department of Materials Chemistry, Tohoku University, Aoba-yama 07, Sendai, 980-8579, Japan
Kyota Uheda
Affiliation:
Department of Materials Chemistry, Tohoku University, Aoba-yama 07, Sendai, 980-8579, Japan
Tadashi Endo
Affiliation:
Department of Materials Chemistry, Tohoku University, Aoba-yama 07, Sendai, 980-8579, Japan
George S. Nolas
Affiliation:
Department of Physics, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620-5700, U.S.A
Get access

Abstract

Filled skutterudites exhibit properties that comply with the concept of a “phonon-glass electron-crystal”, as proposed by Slack. The optimal filled skutterudite would have filler atoms that exhibit large thermal vibration amplitudes in the voids of the crystal structure. It is desirable that these loosely bound atoms give rise to strong phonon scattering without greatly affecting the essential part of the band structure of the skutterudites. This criterion is difficult to meet. Most attempts have employed charge compensation for filling fractions above 50 %. In this report we present the use of a high-pressure technique for the synthesis of new filled skutterudites. By using our high-pressure synthesis technique CoSb3-based skutterudites filled with group-14 elements (Ge, Sn, and Pb) have been synthesized with up to 100 % filling without charge compensation of the host lattice. The structural analysis reveals that the Sn atoms exhibit very large thermal vibration amplitude, indicative of a large “rattling” motion. The Sn-filled specimens exhibit a low thermal conductivity, lower than that of any previously reported filled skutterudite, while the favorable semiconducting nature of the host lattice is not substantially changed by Sn filling. Tin atoms may therefore be better “rattlers” in the CoSb3 host lattice than lanthanide or actinide atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hulliger, F. and Mooser, E., Prog. Solid State Chem. 2, 330 (1965).Google Scholar
2. Jeitschko, W. and Braun, D. J., Acta Crystallogr. Sect B 33, 3401 (1977).Google Scholar
3. Braun, D. J. and Jeitschko, W., J. Solid State Chem. 32, 357 (1980).Google Scholar
4. Grandjean, F., Gerard, A., Braun, D. J., and Jeitschko, W., J. Phys. Chem. Solids 45, 877 (1984).Google Scholar
5. Meisner, G. P., Torkachvili, M. S., Yang, K. N., Maple, M. B., and Guertin, R. P., J. Appl. Phys. 57, 3073 (1985).Google Scholar
6. Slack, G. A., in Thermoelectric Materials-New directions and Approaches, edited by Tritt, T. M., Kanatzidis, M. G., Lyon, H. B. Jr., and Mahan, G. D., (Mater. Res. Soc. Proc. 478, Pittsburgh, PA, 1997) pp. 4754. See also G.S. Nolas, G.A. Slack, T.M. Tritt and D.T. Morelli, Proceedings of the Nineteenth International Conference on Thermoelectrics, Ioffe Physical-Technica Institute, St. Petersburg, 1996) pp. 236-239.Google Scholar
7. Stetson, N. T., Kauzlarich, S. M., and Hope, H., J. Solid State Chem. 91, 140 (1991).Google Scholar
8. Braun, D. J. and Jeitschko, W., J. Less-Common Metals 76, 33 (1980).Google Scholar
9. Fleurial, J.-P., Caillat, T., and Borshchevsky, A., in Thermoelectric Materials-New directions and Approaches, edited by Tritt, T. M., Kanatzidis, M. G., Lyon, H. B. Jr., and Mahan, G. D., (Mater. Res. Soc. Proc. 478, Pittsburgh, PA, 1997) pp. 175–86.Google Scholar
10. Slack, G. A. and Tsoukala, V. G., J. Appl. Phys. 76, 1665 (1994).Google Scholar
11. Sharp, J. W., Jones, E.C., Williams, R.K., Martin, P.M., and Sales, B.C., J.Appl. Phys. 78, 1013 (1995).Google Scholar
12. Feldman, J. L. and Singh, D. J., Phys. Rev. B 53, 6273 (1996).Google Scholar
13. Tritt, T. M., Nolas, G. S., Slack, G. A., Ehrlich, A. C., Gillespie, D. J., and Cohn, J. L., J.Appl. Phys. 79, 8412 (1996).Google Scholar
14. Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, 1325 (1996).Google Scholar
15. Nolas, G. S., Harris, V. G., Tritt, T.M., and Slack, G. A., J. Appl. Phys. 80, 6304 (1996).Google Scholar
16. Nolas, G. S., Slack, G. A., Morelli, D. T., Tritt, T.M., and Ehrlich, A. C., J. Appl. Phys. 79, 4002 (1996).Google Scholar
17. Nolas, G. S., Morelli, D. T., and Tritt, T. M., Ann. Rev. Mater. Sci. 29, 89 (1999).Google Scholar
18. Uher, C., in Recent Trends in Thermoelectric Materials Research I, edited by Tritt, T. M., (Semiconductors and Semimetals 69, Academic Press, San Diego, CA, 2001) pp. 139253.Google Scholar
19. Chen, B., Xu, J.-H., Uher, C., Morelli, D. T., Meisner, G. P., Fleurial, J.-P., Caillat, T., and Borshchevsky, A., Phys. Rev. B 55, 1476 (1997).Google Scholar
20. Morelli, D. T., Meisner, G. P., Chen, B., Hu, S., and Uher, C., Phys. Rev. B 56, 7376 (1997).Google Scholar
21. Nolas, G. S., Cohn, J. L., and Slack, G. A., Phys. Rev. B 58, 164 (1998).Google Scholar
22. Sales, B. C., Chakoumakos, B. C., and Mandrus, D., Phys. Rev. B 61, 2475 (2000).Google Scholar
23. Jeitschko, W., Foecker, A. J., Paschke, D., Dewalsky, M. V., Evers, Ch. B. H., Künnen, B., Lang, A., Kotzyba, G., Rodewald, U. Ch., and Möller, M. H., Z. Anorg. Allg. Chem. 626, 1112 (2000).Google Scholar
24. Chen, L. D., Kawahara, T., Tang, X. F., Goto, T., Hirai, T., Dyck, J. S., Chen, W., and Uher, C., J. Appl. Phys. 90, 1864 (2001).Google Scholar
25. Hornbostel, M. D., Hyer, E. J., Thiel, J., Edvalson, J. H., and Johnson, D. C., Inorg. Chem. 36, 4270 (1997).Google Scholar
26. Hornbostel, M. D., Hyer, E. J., Thiel, J., and Johnson, D. C., J. Am. Chem. Soc. 119, 26655 (1997).Google Scholar
27. Sellinschegg, H., Stuckmeyer, S. L., Hornbostel, M. D., and Johnson, D. C., Chem. Mater. 10, 1096 (1998).Google Scholar
28. Takizawa, H., Miura, K., Ito, M., Suzuki, T., and Endo, T., J. Alloys Compd. 282, 79 (1999).Google Scholar
29. Takizawa, H., Ito, M., Uheda, K., and Endo, T., J. Ceram. Soc. Japan 108 (2000) 530.Google Scholar
30. Nolas, G. S., Takizawa, H., Endo, T., Sellinschegg, H., and Johnson, D. C., Appl. Phys. Lett. 77, 52 (2000).Google Scholar
31. Schmidt, T., Kliche, G., and Lutz, H.D., Acta Crystallogr. Sect C 43 (1987) 1678.Google Scholar
32. Izumi, F. and Ikeda, T., Mater. Sci. Forum 198, 321 (2000).Google Scholar
33. Meisner, G. P., Morelli, D. T., Hu, S., Yang, J., and Uher, C., Phys. Rev. Lett. 80, 3551 (1998).Google Scholar
34. Brostigen, G. and Kjekshus, A., Acta Chem. Scand. 24, 2993 (1970).Google Scholar
35. Donaldson, J. C., Kjekshus, A., Nicholson, D. G., and Rakke, T., J. Less-Common Metals 41, 255 (1975).Google Scholar
36. Nolas, G. S. and Takizawa, H. (manuscript in preparation).Google Scholar
37. Sales, B.C., Chakoumakos, B.C., Mandrus, D. and Sharp, J.W., J. Solid State Chem. 146, 528 (1999).Google Scholar
38. For an excellent review of this approach see Sales, B.C., Mandrus, D.G. and Chakoumakos, B.C., in Recent Trends in Thermoelectric Materials Research II, edited by Tritt, T. M., (Semiconductors and Semimetals 70, Academic Press, San Diego, CA, 2001) pp. 136.Google Scholar