Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T10:14:05.570Z Has data issue: false hasContentIssue false

High Quality n-Cd0.2 Hg0.8 Te Grown by Liquid Phase Epitaxy

Published online by Cambridge University Press:  26 February 2011

K. Yasumura
Affiliation:
Materials and Electronic Devices Laboratory, Mitsubishi Electric Corporation, Amagasaki, Hyogo, Japan
H. Kimura
Affiliation:
Materials and Electronic Devices Laboratory, Mitsubishi Electric Corporation, Amagasaki, Hyogo, Japan
Y. Komine
Affiliation:
LSI Laboratory, Mitsubishi Electric Corporation, Itami, Hyogo, Japan
K. Sato
Affiliation:
Materials and Electronic Devices Laboratory, Mitsubishi Electric Corporation, Amagasaki, Hyogo, Japan
Get access

Abstract

Influential factors to the detectivity of n-CMT grown by liquid phase epitaxy on CdTe(111)B substrate are investigated. The factors are such as qualities of the substratesdopants and electrical parameters by which photoconductivity in CMT is governed.

We show that the doping with small amounts of In is an appropriate mean not only to raise the mobility but also to make reproductivity better. The In- doped epitagia�r after annealed has the highest mobility among tested in 3×10 cm5 /Vsec, and the photoconductive lifetime in 0.54 μsec at 77K.The resultant detectivity of an infrared device is 3×1010 cmHz1/2 w−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1.Bell, S.L. and Sen, S., J. Vac. Sci. Technol. A 3 (1), 112 (1985)Google Scholar
2.Tranchart, J.C., Latorre, B., Foucher, C., and Legouge, Y., J. Crystal Growth 72, 468 (1985)Google Scholar
3.Woolhouse, G.R., Magee, T.J., Kawayoshi, H.A., Leung, C.S.H., and Ormond, R.D., J. Vac. Sci. Technol. A 3 (1), 83 (1985)Google Scholar
4.Van der Pauw Philips, L.J.Res. Rep. 13, 1 (1958)Google Scholar
5.Edwall, D.D., Gertner, E.R., and Tennant, W.E., J. Appl. Phys. 55 (6), 1453 (1984)Google Scholar
6.Parker, S.G. and Pinnell, J.E., J. Electrochem. Soc. 118, 1868 (1971)Google Scholar
7.Yoshikawa, M., Maruyama, K., Saito, T., Maekawa, T., and Takigawa, H., J. Vac. Sci. Technol. A 5 (5), 3052 (1987)Google Scholar
8.Szilagyi, A. and Grimbergen, M.N., J. Vac. Sci. Technol. A 4 (4), 2200 (1986)Google Scholar
9.Booyens, H. and Basson, J.H., Phys. stat. sol. (a) 85, 449 (1984)Google Scholar
10.Wang, C.C., Shin, S.H., Chu, M., Lanir, M., and Vanderwyck, A.H.B., J. Electrochem. Soc. 127 (1), 175 (1980)Google Scholar
11.Bhat, I.B., Taskar, N.R., and Ghandhi, S.K., J. Vac. Sci. Technol. A 4 (4), 2230 (1986)Google Scholar
12.Irvine, S.J.C., Giess, J., Mullin, J.B., Blackmore, G.W., and Dosser, O.D., J. Vac. Sci. Technol. B 3 (5), 1450 (1985)Google Scholar
13.Hoke, W.H., Traczews-ki, R., Kreismanis, V.G., Korenstein, R., and Lemonias, P.J., Appl. Phys. Lett. 47 (3), 276 (1985)Google Scholar
14.Faurie, J.P. and Million, A., J. Crystal Growth 54, 582 (1981)Google Scholar
15.Farrow, R.F.C., J. Vac. Sci. Technol. A 3 (1), 606(1985)Google Scholar
16.Sivananthan, S., Chu, X., Reno, J., and Faurie, J.P., J. Appl. Phys. 60 (4), 1359 (1986)Google Scholar
17.Madarasz, F.L., Szmulowicz, F., and McBath, J.R., J. Appl. Phys. 58 (1), 361 (1985)Google Scholar
18.Nakagawa, K., Maeda, K., and Takeuchi, S., Appl. Phys. Lett. 34 (9), 574 (1979)Google Scholar
19.Willardsor, R.K., Semiconductors and Semimetals 13, 45 (1978)Google Scholar