Published online by Cambridge University Press: 01 February 2011
The quantum efficiency (QE) of photoluminescence (PL) has been estimated in GaN and ZnO samples. A Si-doped GaN layer grown by molecular beam epitaxy (MBE) exhibited the highest QE of about 90% at low temperatures. Recombination via the shallow donor-acceptor pair transitions dominated in this sample. In contrast, a bulk ZnO crystal with the QE of PL of about 85% contained almost no defect- or impurity-related PL signatures besides the emission attributed to free and bound excitons. The sources of radiative and nonradiative recombination in GaN and ZnO are discussed.