Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T07:37:45.186Z Has data issue: false hasContentIssue false

High Reflectivity AlGaN/GaN Bragg Mirrors Grown by MOCVD for Microcavities Applications.

Published online by Cambridge University Press:  01 February 2011

M. Moret
Affiliation:
Groupe d'Etudes des Semiconducteurs, CC074, Université Montpellier II, 34095 Montpellier Cedex 5, France
S. Ruffenach
Affiliation:
Groupe d'Etudes des Semiconducteurs, CC074, Université Montpellier II, 34095 Montpellier Cedex 5, France
O. Briot
Affiliation:
Groupe d'Etudes des Semiconducteurs, CC074, Université Montpellier II, 34095 Montpellier Cedex 5, France
B. Gil
Affiliation:
Groupe d'Etudes des Semiconducteurs, CC074, Université Montpellier II, 34095 Montpellier Cedex 5, France
R.L. Aulombard
Affiliation:
Groupe d'Etudes des Semiconducteurs, CC074, Université Montpellier II, 34095 Montpellier Cedex 5, France
Get access

Abstract

Bragg mirrors are highly interesting structures for a large set of applications including vertical cavity lasers and the upcoming range of devices based on microcavities. Although the nitride semiconductors are performing fairly well in optoelectronic applications, it is not straightforward to realize Bragg mirrors based on this material system, due to the low optical index differences between GaN and AlN. Moreover, the lattice parameter difference between these materials will generate crystal defects, which prevent the stacking of a large number of periods, adding to the difficulty. In this work, we have grown high reflectivity Bragg mirrors, with a band centered in the visible blue range. The structures were first modelled, then grown by low pressure MOCVD, and were optimised using an in-situ reflectivity system.

This in-situ reflectivity measurement was compared to a calculated profile, to enable real-time control of the structures. The samples were characterized by transmission electron microscopy and reflectivity. It was possible to realize samples with 90% reflectivity near 400 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weisbuch, C., Nishioka, M., Ishikawa, A. and Arakawa, Y., Phys. Rev. Lett. 69, 3314 (1992)Google Scholar
2. Nakamura, S. and Fasol, G., “The blue laser diode”, Springer, Berlin (1997)Google Scholar
3. Brunner, D., Angerer, H., Bustarret, E., Freudenberg, F., Hopler, R., Dimitrov, R., Ambacher, O. and Stutzmann, M., J. Appl. Phys. 82(10), 5090 (1997)Google Scholar
4. Kawashima, T., Yoshikawa, H., Adachi, S., Fuke, S., Ohtsuka, K., J. Appl. Phys, 82(7), 3528 (1997)Google Scholar
5. Yang, T., Goto, S., Kawata, M., Uchida, K., Niwa, A., Gotoh, J., Jap. J. Appl. Phys, 37(10A), L1105 (1998)Google Scholar
6. Tang, X., Yuan, Y., Wongchotigul, K., Spencer, M. G., Appl. Phys. Lett., 70(24), 3206 (1997)Google Scholar
7. Laws, G.M., Larkins, E.C., Harrison, I., Molloy, C., Somerford, D., J. Appl. Phys, 89(2), 1108 (2001)Google Scholar
8. Bergmann, M.J., Ozgur, U., Casey, H.C. Jr, Everitt, H.O., Muth, J.F., Appl. Phys. Lett., 75(1), 67 (1999)Google Scholar