Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T19:53:46.185Z Has data issue: false hasContentIssue false

The High Resolution Magneto-Optical Faradayeffect as a Research Tool to Investigate Details of Current and Magnetic Flux Distribution in Y-Ba-Cu-O Thin Films

Published online by Cambridge University Press:  15 February 2011

A. Forkl
Affiliation:
MPI für Metallforschung, Institut für Physik, Heisenbergstr. 1, D-70569 Stuttgart
H. Kronmüller
Affiliation:
MPI für Metallforschung, Institut für Physik, Heisenbergstr. 1, D-70569 Stuttgart
H.-U. Habermeier
Affiliation:
MIPI ffr Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart
B. Leibold
Affiliation:
MIPI ffr Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart
Get access

Abstract

The magneto-optical Faradayeffect [MOFE] is known to be an excellent tool for the spatially resolved analysis of the flux distribution in superconductors. We use three examples to demonstrate the power of this technique for device oriented investigations. It is shown that homogeneous Yba2Cu3O7 thin films with different shape show a flux pattern strongly depending on the geometry of the sample; model calculations for the flux distribution are in excellent agreement with the experimental results. Furthermore, we show, that crystallographic defects as well as imperfections due to pattern delineation are affecting the flux pattern on macroscopic scale. In a third example we use the MOFE to demonstrate that pulsed laser irradiation of Yba2Cu3O7 thin films with UV photons of moderate flux causes an enhancement of the critical current.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[;1] Habermeier, H,- U. and Kronmuller, H., Appl. Phys. 12, 297 ( 1977)Google Scholar
[2] Forkl, A., Habermeier, H.-U., Leibold, B., Dragon, T., and Kronmniller, H., Physica C 180, 155 ( 1991)Google Scholar
[3] Forkl, A., Physica Scripta T 49, 148 ( 1993)Google Scholar
[4] Habermeier, H.-U., Eur. J. Solid State Inorg. Chem. 28, 619 ( 1991)Google Scholar
[5] Thomsen, Ch., Wegerer, R., Habermeier, H.-U., and Cardona, M., Solid State Comm 83, 199 (1992)Google Scholar
[6] Forkl, A., Dragon, T. and Kronmuller, H., J. Appl. Phys. 67, 3047 ( 1990)Google Scholar
[7] Bean, C. P., Phys. Rev. Lett. 8, 250 ( 1962 )Google Scholar
[8] Brandt, E. H., Indenbom, M. V. and Forkl, A., Europhys. Lett. 22, 735 ( 1993)Google Scholar
[9] Forkl, A. and Kronmuller, H., Phys. Rev. B 52 ( to appear December 1995)Google Scholar
[10] Civale, L., Marwick, A., Worthington, T. K., Malozemoff, A.P., Hotzberg, F.H., Thompson, J. R. and Kirk, M.A., Phys. Rev. Lett. 95, 1164 (1990)Google Scholar
[11] Civale, L., Marwick, A.,Worthington, T. K., Kirk, M. A., Thompson, J. R., Krusin-Elbaum, L, Sun, Y., Clem, J. R. and Holtzberg, F., Phys. Rev. Lett. 67, 648 ( 1991 )Google Scholar