No CrossRef data available.
Published online by Cambridge University Press: 24 April 2014
We report a low cost and high throughput electrochemical anodic oxidation method to enhance the metal-semiconductor contact between a silver electrode and an organic semiconductor in a rectifying diode application. The oxidized layer enhances the contact properties, leading to better device performance. Three different anodic oxide thicknesses were used in the study. Current-voltage and AC rectification measurements were used to characterize the printed devices. The DC output voltage of the half-wave rectifier increased consistently as a function of the oxide thickness. This procedure points toward a cost-effective way to optimize printed organic devices.