Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T01:23:13.420Z Has data issue: false hasContentIssue false

Highly Reproducible Electric Bistability in an Organic Single Layer Device with Ag Top Electrode

Published online by Cambridge University Press:  26 February 2011

Masaya Terai
Affiliation:
mterai2@asem.kyushu-u.ac.jp, Interdisciplinary graduate school of engineering sciences, Kyushu University, Dept. of Applied Science for electronics and materials, 6-1 Kasuga-Koen, Kasuga, 815-8580, Japan, +81-92-583-7533, +81-92-583-7532
Katsuhiko Fujita
Affiliation:
katsuf@asem.kyushu-u.ac.jp, Interdisciplinary graduate school of engineering sciences, Kyushu University, Dept. of Applied Science for electronics and materials, 6-1 Kasuga-Koen, Kasuga, 816-8580, Japan
Tetsuo Tsutsui
Affiliation:
tsuigz@mbox.nc.kyushu-u.ac.jp, Interdisciplinary graduate school of engineering sciences, Kyushu University, Dept. of Applied Science for electronics and materials, 6-1 Kasuga-Koen, Kasuga, 816-8580, Japan
Get access

Abstract

High reproducible electrical bistability was observed and we deliberated its working mechanism through measurements of dynamic dielectric response in single organic layer sandwiched structure using top Ag electrode. The electrical transition between high-impedance state (OFF state) and low-impedance state (ON state) happened by the change of applied voltage patterns. Distinction between the OFF state and the ON state was not induced by change of static charge accumulation but reflected the difference of the response of mobile electric careers in the organic film. We proposed plausible working mechanism of transition from the pristine state to the bistable state. Namely, the electrical bistable state of our device is generated by penetration of Ag nanoparticles and creation of charge pathways across the organic film.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Szymanski, A., Larson, D. C. and Labes, M. M., Appl. Phys. Lett. 14, 88 (1969).Google Scholar
2. Potember, R. S., Poehier, T. O. and Cowan, D. O., Appl. Phys. Lett. 34, 405 (1979).Google Scholar
3. Oyamada, T., Tanaka, H., Sasabe, H. and Adachi, C., Appl. Phys. Lett. 83, 1252 (2003).Google Scholar
4. Kumai, R., Okimoto, Y. and Tokura, Y., Science. 284, 1645 (1999).Google Scholar
5. Taylor, D. M. and Mills, C. A., J. Appl. Phys. 90, 306 (2001).Google Scholar
6. Ling, Q., Song, Y., Ding, S. J., Zhu, C., Chan, D. S. H., Kwong, D., Kang, E. and Neoh, K., Adv. Mater. 17, 455 (2005).Google Scholar
7. Bandyopadhyay, A. and Pal, A. J., Appl. Phys. Lett. 83, 1252 (2003).Google Scholar
8. Xu, W., Chen, G. R., Li, P. J. and Hua, Z. Y., Appl. Phys. Lett. 67, 2241 (1995).Google Scholar
9. Kawakami, H., Kato, H., Iwamoto, T. and Kuroda, M., Proceedings of SPIE 5217, 71 (2003).Google Scholar
10. Ouyang, J., Chu, C., Szmanda, C. R.. Ma, L. and Yang, Y., Nat. Mater. 3, 918 (2004).Google Scholar
11. Majumdar, H. S., Baral, J. K., Ősterbacka, R., Ikkala, O. and Stubb, H., Org. Elect. 6, 188 (2005).Google Scholar
12. Ma, L., Liu, J. and Yang, Y., Appl. Phys. Lett. 80, 2997 (2002).Google Scholar
13. Ma, L., Pyo, S., Ouyang, J., Xu, Q. and Yang, Y., Appl. Phys. Lett. 82, 1419 (2003).Google Scholar
14. Bozano, L. D., Kean, B. W., Deline, V. R.. Salem, J. R. and Scott, J. C., Appl. Phys. Lett. 84, 607 (2004).Google Scholar
15. He, J., Ma, L., Wu, J. and Yang, Y., J. Appl. Phys. 97, 064507 (2005).Google Scholar
16. Pyo, S., Ma, L., He, J., Xu, Q. and Yang, Y., J. Appl. Phys. 98, 05303 (2005).Google Scholar
17. Wu, J., Ma, L. and Yang, Y., Phys. Rev. B. 69, 115321 (2004).Google Scholar
18. Bozano, L. D., Kean, B. W., Beinhoff, M., Carter, K. R., Rice, P. M. and Scott, J. C., Adv. Func. Mat. 15, 1933 (2005).Google Scholar
19. Terai, M., Fujita, K. and Tsutsui, T., Jpn. J. Appl. Phys. 45, 4B, 3754 (2006).Google Scholar
20. Chen, S. A., Liao, C. S., Macromolecules, 26, 2810 (1993).Google Scholar
21. Majumdar, H. S., Bolognesi, A. and Pal, A. J., Thin Solid Films, 446, 296 (2004).Google Scholar
22. Chen, J. and Ma, D., Appl. Phys. Lett. 87, 023505 (2005).Google Scholar
23. Beck, A., Bednorz, J. G, Gerber, Ch., Rossel, C. and Widmer, D., Appl. Phys. Lett. 77, 139 (2001).Google Scholar