Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:11:45.002Z Has data issue: false hasContentIssue false

High-Pressure and High-Temperature Synthesis of a Novel Perovskite Compound: Magnetic and Electric Properties of the Rhodium Oxide SrRhO3

Published online by Cambridge University Press:  01 February 2011

K. Yamaura
Affiliation:
Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
D.P. Young
Affiliation:
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
E. Takayama-Muromachi
Affiliation:
Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
Get access

Abstract

Novel perovskite compound SrRhO3 was synthesized in a polycrystalline form by high-pressure technique at 6 GPa and 1500°C, followed by measurements of magnetic susceptibility, electrical resistivity, thermopower, and specific heat. Powder x-ray diffraction study found the slightly distorted perovskite structure, GdFeO3-type, to be likely to SrRhO3; space group was Pnma and lattice parameters were α = 5.5394(2) Å, b = 7.8539 (3) Å, and c = 5.5666(2) A. Oxygen vacancies in the perovskite were quantitatively investigated by thermogravimetric analysis and then found either absent or at least insignificant. The title compound shows a Fermi-liquid behavior in its electrical resistivity. The magnetic susceptibility is large [χ(300) ∼1.1x10-3 emu/mol-Rh], and the characteristics seem to be intermediate between enhanced Pauli- and Curie-Weiss-type paramagnetism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, I.H., Goto, O., Makino, H., Hussey, N. E., and Ishikawa, M., Phys. Rev. B 58, 4372 (1998).Google Scholar
2. Miyasaka, S., Okuda, T., and Tokura, Y., Phys. Rev. Lett. 85, 5388 (2000).Google Scholar
3. Nozaki, A., Yoshikawa, H., Wada, T., Yamauchi, H., and Tanaka, S., Phys. Rev. B 43, 181 (1991).Google Scholar
4. Chamberl, B.L., Solid State Commun. 5, 663 (1967).Google Scholar
5. Yamada, H., Kawasaki, M., and Tokura, Y., Appl. Phys. Lett. 80, 622 (2002).Google Scholar
6. Bezdicka, P., Wattiaux, A., Grenier, J.C., Pouchard, M., and Hagenmuller, P., Anorg, Z.. Allg. Chem. 619, 7 (1993).Google Scholar
7. Zhuang, M., Zhang, W., Hu, A., and Ming, N., Phys. Rev. B 57, 13655 (1998).Google Scholar
8. Istomin, S.Y., Svensson, G., D'yachenko, O.G., Holm, W., and Antipov, E. V., J. Solid State Chem. 141, 514 (1998).Google Scholar
9. Hannerz, H., Svensson, G., Istomin, S. Y., and D'yachenko, O.G., J. Solid State Chem. 147, 421 (1999).Google Scholar
10. Mizoguchi, H., Fukumi, K., Kitamura, N., Takeuchi, T., Hayakawa, J., Yamanaka, H., Yanagi, H., Hosono, H., and Kawazoe, H., J. Appl. Phys. 85, 6502 (1999).Google Scholar
11. Bouchard, G.H. Jr, and Sienko, M.J., Inorg. Chem. 7, 441 (1968).Google Scholar
12. Mizoguchi, H., Kitamura, N., Fukumi, K., Mihara, T., Nishii, J., Nakamura, M., Kikuchi, N., Hosono, H., and Kawazoe, H., J. Appl. Phys. 87, 4617 (2000).Google Scholar
13. Ikeda, S.I., and Shirakawa, N., Physica C 341-348, 785 (2000).Google Scholar
14. Hayashi, S., and Aoki, R., Mater. Res. Bull. 14, 409 (1979).Google Scholar
15. Brixner, L.H., J. Inorg. Nucl. Chem. 14, 225 (1960).Google Scholar
16 Kennedy, B.J., and Hunter, B.A., Phys. Rev. B 58, 653 (1998).Google Scholar
17. Yamaura, K. and Takayama-Muromachi, E., Phys. Rev. B 64, 224424 (2001).Google Scholar
18. Longo, J.M., Kafalas, J.A., and Arnott, R.J., J. Solid State Chem. 3, 174 (1971).Google Scholar
19. Kafalas, J.A. and Longo, J.M., J. Solid State Chem. 4, 55 (1972).Google Scholar
20. Jacob, K.T., Okabe, T.H., Uda, T., and Waseda, Y., J. Alloys and Compd. 288, 188 (1999).Google Scholar
21. Whangbo, M.-H., and Koo, H.-J., Solid State Commun. 118, 491 (2001).Google Scholar
22. Chmaissem, O., Dabrowski, B., Kolesnik, S., Mais, J., Brown, D.E., Kruk, R., Prior, P., Pyles, B., and Jorgensen, J.D., Phys. Rev. B 64, 134412 (2001).Google Scholar
23. Schooley, J.F., Hosler, W.R., and Cohen, M.L., Phys. Rev. Lett. 12, 474 (1964).Google Scholar
24. Suzuki, H., Bando, H., Ootsuka, Y., Inoue, I.H., Yamamoto, T., Takahashi, K., and Nashihara, Y., J. Phy. Soc. Jpn. 65, 1529 (1996).Google Scholar
25. Kennedy, B.J., Howard, C.J., and Chakoumakos, B.C., Phys. Rev. B 59, 4023 (1999).Google Scholar
26. Kennedy, B.J., Howard, C.J., and Chakoumakos, B.C., Phys. Rev. B 60, 2972 (1999).Google Scholar
27. Wang, Y.X., Zhong, W.L., Wang, C.L., and Zhang, P.L., Solid State Commun. 120, 133 (2001).Google Scholar
28. Sarkozy, R.F. and Chamberl, B.L., Mater. Res. Bull. 8, 1351 (1973).Google Scholar
29. Campa, J., Gutierrez-Puebla, E., Monge, A., Rasines, I., and Ruiz-Valero, C., J. Solid State Chem. 126, 27 (1996).Google Scholar
30. Whangbo, M.-H., Koo, H.-J., Lee, K.-S., Gourdon, O., Evain, M., Jobic, S., and Brec, R., J. Solid State Chem. 160, 239 (2001).Google Scholar
31. Nguyen, T.N. and Loye, H.-C. zur, J. Solid. State. Chem. 117, 300 (1995).Google Scholar
32. Takeda, Y., Hashino, T., Miyamoto, H., Kanamaru, F., Kume, S., and Koizumi, M., Inorg, J.. Nucl. Chem. 34, 1599 (1972).Google Scholar
33. Evain, M., Boucher, F., Gourdon, O., Petricek, V., Dusek, M., and Bezdicka, P., Chem. Mater. 10, 3068 (1998).Google Scholar
34. Nguyen, T.N., Lee, P.A., and Loye, H.-C. zur, Science 271, 489 (1996).Google Scholar
35. Campa, J.A., Gutierrez-Puebla, E., Monge, M.A., Rasines, I., and Ruiz-Valero, C., J. Solid State Chem. 108, 230 (1994).Google Scholar
36. Darriet, J. and Subramanian, M.A., J. Mater. Chem. 5, 543 (1995).Google Scholar
37. Maeno, Y., Rice, T.M., and Sigrist, M., Phys. Today 54, 42 (2001).Google Scholar
38. Grigera, S.A., Perry, R.S., Schofield, A.J., Chiao, M., Julian, S.R., Lonzarich, G.G., Ikeda, S.I., Maeno, Y., Millis, A.J., Mackenzie, A.P., Science 294, 329 (2001).Google Scholar
39. Aeppli, G. and Soh, Y.A., Science 294, 315 (2001).Google Scholar
40. Sachdev, S., Quantum Phase Transitions, (Cambridge University Press, Cambridge, 1999).Google Scholar
41. Perry, R.S., Galvin, L.M., Grigera, S.A., Capogna, L., Schofield, A.J., Mackenzie, A.P., Chiao, M., Julian, S.R., Ikeda, S.I., Nakatsuji, S., Maeno, Y., and Pfleiderer, C., Phys. Rev. Lett. 86, 2661 (2001).Google Scholar
42. Plaisier, J.R., Vliet, A.A.C. van, and Ijdo, D.J.W., J. Alloys Compd. 314, 56 (2000).Google Scholar
43. Horyn, R., Bukowski, Z., Wolcyrz, M., and Zaleski, A.J., J. Alloys Compd. 262-263, 267 (1997).Google Scholar
44. Claridge, J.B. and Loye, H.-C. zur, Chem. Mater. 10, 2320 (1998).Google Scholar
45. Shimura, T., Itoh, M., Inaguma, Y., and Nakamura, T., Phys. Rev. B 49, 5591 (1994).Google Scholar
46. Yamaoka, S., Akaishi, M., Kanda, H., Osawa, T., Taniguchi, T., Sei, H., and Fukunaga, O., J. High Pressure Inst. Jpn. 30, 249 (1992).Google Scholar
47. Goodenough, J.B. and Longo, J.M., Crystallographic and magnetic properties of perovskite and perovskite-relatedcompounds, in Landolt-Bornstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik Neue Serie, Gruppe III, Band 4, Teil a, pp. 126314, Springer-Verlag, Berlin, 1970.Google Scholar
48. Shannon, R. D., Acta Crystallogr. Sec. A 32, 751 (1976).Google Scholar
49. Moriya, T., Spin Fluctuations in Itinerant Electron Magnetism, edited by Cardona, Manuel (Springer-Verlag, 1985).Google Scholar
50. Moriya, T. and Ueda, K., Adv. Phys. 49, 555 (2000).Google Scholar
51. Nakamura, T., Shimura, T. Itoh, M., and Takeda, Y., J. Sold State Chem. 103, 523 (1993).Google Scholar