Published online by Cambridge University Press: 10 June 2014
In this paper an integrated wavelength optical filter and photodetector for Visible Light Communication (VLC) is used. The proposed application uses indoor warm light lamps lighting accomplished by ultra-bright light-emitting diodes (LEDs) pulsed at frequencies higher than the ones perceived by the human eye. The system was analyzed at two different wavelengths in the visible spectrum, one in the blue (430 nm) and the other in the red (626 nm) regions, driven at different currents in order to change their optical intensities. The signals were transmitted into free space and measured using a pin-pin photodetector based on a-SiC:H/a-Si:H. This detector behaves as an optical filter with controlled wavelength sensitivity through the use of adequate optical biasing light. The output photocurrent was measured for different optical intensities of the transmitted optical signal and the extent of each signal was tested. An electrical model was used to support the physical operation of the device.