Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T01:11:48.991Z Has data issue: false hasContentIssue false

Homoepitaxial growth of high quality thick diamond film with microwave plasma CVD technique

Published online by Cambridge University Press:  02 March 2011

Hong-Xing Wang*
Affiliation:
Diamond CVD Systems Department, Seki Technotron Corp., 5-6-30, Kiba, Koto-ku, Tokyo 135-0042, Japan
Noritaka Ishigaki
Affiliation:
Diamond CVD Systems Department, Seki Technotron Corp., 5-6-30, Kiba, Koto-ku, Tokyo 135-0042, Japan
Toshiki Ohkawa
Affiliation:
Diamond CVD Systems Department, Seki Technotron Corp., 5-6-30, Kiba, Koto-ku, Tokyo 135-0042, Japan
Shinichi Kokami
Affiliation:
Diamond CVD Systems Department, Seki Technotron Corp., 5-6-30, Kiba, Koto-ku, Tokyo 135-0042, Japan
Hideo Inoue
Affiliation:
Diamond CVD Systems Department, Seki Technotron Corp., 5-6-30, Kiba, Koto-ku, Tokyo 135-0042, Japan
Ryuuichi Terajima
Affiliation:
Diamond CVD Systems Department, Seki Technotron Corp., 5-6-30, Kiba, Koto-ku, Tokyo 135-0042, Japan
Katsuhiko Mutoh
Affiliation:
Diamond CVD Systems Department, Seki Technotron Corp., 5-6-30, Kiba, Koto-ku, Tokyo 135-0042, Japan
Toshiro Kotaki
Affiliation:
NJC Institute of Technology, Namiki Precision Jewel Co., Ltd., 8-22 Shinden 3-chome, Adachi-Ku, Tokyo 123-8511 Japan
*
*Address correspondence to: hxwang@sekitech.jp
Get access

Abstract

A growth of high quality thick diamond film has been carried out on high pressure and high temperature diamond substrate by microwave plasma chemical vapor deposition system. First, the effect of growth parameters on the growth film morphologies was investigated, indicating that the diamond film is very sensitive to the growth temperature and input microwave power. Then, sample holders with different geometries were used in our experiment, illustrating that high quality diamond film can be grown by using the sample holder with flat surface. Finally, the characterization of the as grown samples has been carried out.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yan, C. S., Vohra, Y. K., Mao, H. M., and Hemley, R. J., Appl. Phys. Sci. 99, 12523(2002).Google Scholar
2. Mokuno, Y., Chayahara, A., Soda, Y., Yamada, H., Horino, Y., and Fujimori, N., Diamond Relat. Mater. 15, 455(2006).Google Scholar
3. Mokuno, Y., Chayahara, A., and Yamada, H., Diamond Relat. Mater. 17(2008)415.Google Scholar
4. Okushi, H., Watanabe, H., Ri, S., Yamanaka, S., and Takeuchi, T., J. Cryst. Growth 237, 1269(2002).Google Scholar
5. Makino, T., Tokuda, N., Kata, H., Ogura, M., Watanabe, H., Ri, S. G., Yamasaki, S., and Okushi, H., Jpn. J. Appl. Phys. 45,1042(2006).Google Scholar
6. Teraji, T. and Ito, T., J. Cryst. Growth 271, 409(2004).Google Scholar
7. Achard, J., Silva, F., Tallaire, A., Bonnin, X., Lombardi, G., Hassouni, K., and Gicquel, A., J. Phys. D: Appl. Phys. 40, 6175(2007).Google Scholar
8. Tallaire, A., Achard, J., Silva, F., Sussmann, R. S., Gicquel, A.. Diamond Relat. Mater. 14, 249(2005).Google Scholar
9. Teraji, T., Mitani, S., and Ito, T., Phys. Stat. Sol. No.2, 395(2003).Google Scholar
10. Wang, C. L., Irie, M., and Ito, T., Diamond Relat. Mater. 9, 1650(2000).Google Scholar
11. Wang, C. L., Irie, M., and Ito, T., Jpn. J. Appl. Phys. 40, L212(2001).Google Scholar
12. Lee, N., Badzian, A., Diamond Relat. Mater. 6, 130(1997).Google Scholar
13. Yamada, H., Chayahara, A., Mokuno, Y., Horino, Y., Shikata, S., Diamond Relat. Mater. 15, 1738(2006).Google Scholar