Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T00:39:58.706Z Has data issue: false hasContentIssue false

How can Microwave Heating Contribute to the Development of Zeolite Membranes

Published online by Cambridge University Press:  11 February 2011

Anne Julbe
Affiliation:
Institut Européen des Membranes (UMR 5635 CNRS), UM II- CC47, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Julius Motuzas
Affiliation:
Institut Européen des Membranes (UMR 5635 CNRS), UM II- CC47, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Christophe Charmette
Affiliation:
Institut Européen des Membranes (UMR 5635 CNRS), UM II- CC47, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Christian Guizard
Affiliation:
Institut Européen des Membranes (UMR 5635 CNRS), UM II- CC47, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Get access

Abstract

In this work the growth of both a zeolite (MFI) and a zeolite-like material (SOD) were investigated in/on αAl2O3 tubular support, using hydrothermal conditions and microwave (MW) heating. The method reveals efficient for the rapid synthesis of MFI/αAl2O3 membranes although gentle conditions were required in order to limit the thermal degradation of the template. Promising results were also obtained for directly growing SOD in/on the support. In both MFI and SOD MW synthesis the chemical dissolution of the αAl2O3 support influences the final membrane characteristics. In the case of SOD synthesis, this phenomena which increases with both temperature and support size, alters the membrane homogeneity (composition and structure). In order to get round it, MWs were used to prepare SOD small crystals which were deposited on/in the αAl2O3 support and submitted to a secondary growth. Homogeneous membranes were then obtained whose ideal selectivities αH2/N2 and αHe/N2 reaches respectively 4.5 at 20°C and 6.2 at 115°C (these selectivities are lower than 2 for a ZSM-5 membrane in similar conditions).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Slangen, P.M., Jansen, J.C., van Bekkum, H., Microporous Mater. 9, 259 (1997)Google Scholar
2. Chu, P., Dwyer, F.G., Vartulli, J.C., US Patent 4, 778, 666 (1988)Google Scholar
3. Girnus, I., Pohl, M., Richtermendau, J., Schneider, M., Noack, M., Venzke, D., Caro, J., Adv. Mater. 7, 711 (1995)Google Scholar
4. Tzeng, G., Chao, K.J., Adv. Mater. 9, 1154 (1997)Google Scholar
5. Tsai, T.G., Shih, H.C., Liao, S.J., Chao, K.J., Micro. and Meso. Mater. 22, 333 (1998)Google Scholar
6. Han, Yu, Ma, Hao, Qiu, Shilin, Xiao, Feng-Shou, Micro. and Meso. Mater 30, 321(1999)Google Scholar
7. Xiaochun, Xu; Weishen, Yang; Jie, Liu; Liwu, Lin, Advanced Materials 12[3], 195 (2000)Google Scholar
8. Xiaochun, Xu; Weishen, Yang; Jie, Liu; Liwu, Lin, Sep. and Purif. Technol. 25, 241(2001).Google Scholar
9. Kita, H., in Proc. Internat. Workshop on Zeolitic and Microporous Membranes, Kapteijn, F., Jansen, J.C., Gora, L., Makkee, M. (Eds), July 1–4, 2001, TU-Delft, Pumerend (NL), pp.2932.Google Scholar
10. Barnes, M.C., Addai-Mensah, J., Gerson, A.R., Micro. and Mesoporous Materials 31, 303 (1999).Google Scholar
11. Farrusseng, D., Julbe, A., Guizard, C., Cot, L., Sep. Purif. Technol. 25[1–3] 137 (2001).Google Scholar
12. He, Jing, Yang, Xingbin, Evans, D. G., Duan, Xue, Mater. Chem. and Physics 77[1], 270 (2003).Google Scholar
13. Yasushige, Kuroda; Takae, Okamoto; Ryotaro, Kumashiro; Yuzo, Yoshikawa; Mahiko, Nagao, Chem Commun (Camb) 16, 1758 (2002).Google Scholar
14. Yin, Donghong, Yin, Dulin, Micro. and Mesoporous Mater. 24[4–6], 123 (1998).Google Scholar
15. Zhu, Jianhua, Chun, Yuan, Wang, Ying and Xu, Qinhua, Cat. Today, 51[1] 103 (1999).Google Scholar
16. Stenzel, C., Brinkmann, M., Müller, J., Schertlen, R., Venot, Y., Wiesbeck, W., The J. of microwave power and electromagnetic energy 36[3] 155(2001).Google Scholar