Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T04:30:17.840Z Has data issue: false hasContentIssue false

HVPE-GROWN AlGaN/GaN HEMTs

Published online by Cambridge University Press:  01 February 2011

B. Luo
Affiliation:
Department of Chemical Engineering University of Florida, Gainesville, FL 32611
F. Ren
Affiliation:
Department of Chemical Engineering University of Florida, Gainesville, FL 32611
M. A. Mastro
Affiliation:
TDI, Inc Silver Spring, MD 20904
D. Tsvetkov
Affiliation:
TDI, Inc Silver Spring, MD 20904
A. Pechnikov
Affiliation:
TDI, Inc Silver Spring, MD 20904
V. Soukhoveev
Affiliation:
TDI, Inc Silver Spring, MD 20904
V. Dmitriev
Affiliation:
TDI, Inc Silver Spring, MD 20904
K. H. Baik
Affiliation:
Department of Materials Science and Engineering University of Florida, Gainesville, FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering University of Florida, Gainesville, FL 32611
Get access

Abstract

High quality undoped AlGaN/GaN high electron mobility transistors(HEMTs) structures have been gorwn by Hydride Vapor Phase Epitaxy (HVPE). The morphology of the films grown on Al2O3 substrates is excellent with root-mean-square roughness of ∼0.2nm over 10×10μm2 measurement area. Capacitance-voltage measurements show formation of dense sheet of charge at the AlGaN/GaN interface. HEMTs with 1μm gate length fabricated on these structures show transconductances in excess of 110 mS/mm and drain-source current above 0.6A/mm. Gate lag measurements show similar current collapse characteristics to HEMTs fabricated in MBE- or MOCVD grown material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maruska, H. P. and Tietzer, J. J., Appl. Phys. Lett. 15, 367(1969).Google Scholar
2. Molnar, R. J., in “GaN-II”, ed. Peenkove, J. I. and Movstakas, T. D., (Academic Press, NY 1999).Google Scholar
3. Vaudo, R. P. and Phanse, V. M., Electrochem. Sco. Proc. 19-18, 79(1998).Google Scholar
4. Doppalapudi, D. and Movstakus, T. D., in Handbook of Thin Films ed. Nalwa, H. S., Vol. 4 (Academic Press, NY 2002).Google Scholar
5. Molnar, R., Goetz, W., Rornano, L. T. and Johnson, N. M., J. Cryst. Growth. 178, 147(1996).Google Scholar
6. Detchprohm, T., Hiramatsv, K., Amono, H. and Alcasaki, I., Appl. Phys. Lett. 61, 2688(1992).Google Scholar
7. Gibart, P. and Beaumant, B., in GaN-based Technologies, ed. Osinski, M. (SPIE Optical Engineering Series, Washington, 2002).Google Scholar
8. Morhoc, H., Mat. Sci. Eng. R33, 135(2001).Google Scholar
9. Kelly, M. K., Vaudo, R. P., Phanse, V. M., Gorgens, L., Ambacher, O. and Stutzmana, M., Jpn. J. Appl. Phys. 38, L217(1999).Google Scholar
10. Park, S. S., Park, I.-W. and Chok, S. H., Jpn. J. Appl. Phys. 39, L1141(2000).Google Scholar
11. Lee, K. and Auh, K., Jpn. J. Appl. Phys. 40, L13(2001).Google Scholar
12. Kim, S. T., Lee, Y. J., Moon, D. C., Hong, C. and Soo, T. K., Semicond. Sci. Technol. 14, 278(1999).Google Scholar
13. Melaik, Y. V., Vassilevski, K. V., Nikitina, I. P., Babanin, A. I., Davydov, Y. and Dmitriev, A. V., MRS Technol J. Nitride Semicond. Res. 2, 39(1997).Google Scholar
14. Wakahara, A., Yamamoko, T., Ishio, K., Yoshida, A., Seki, Y., Kainosho, K. and Oda, O., Jpn. J. Appl. Phys. 39, 2399(2000).Google Scholar
15. Kryliovk, O., Reed, M., Dann, T. and Anderson, T. J., Mat. Sci. Eng. B66, 26(1999).Google Scholar
16. Motoki, K., Jpn. J. Appl. Phys. 40, L140(2001).Google Scholar
17. Nagahamn, S., Iwasa, N., Senoh, M., Matsushita, T., Sugimoto, Y., Kikoyv, H., Kozaki, T., Suno, M., Matsumura, H., Vinemoko, H., Kocho, K. and Mukai, T., Jpn. J. Appl. Phys. 39, L647(2000).Google Scholar
18. Zolper, J. C., Tech Digest IEDM 389, 16.1.1 (1999).Google Scholar
19.see for example, the papers in the special issue on GaN Electronics, IEEE Trans Electron. Dev. ED48, (2001), ed Zolper, J. C. and Mishra, V. K..Google Scholar
20. Kemeley, R. T., Wallace, H. B. and Yoder, M. N., Proc. IEEE 90, 1059(2002).Google Scholar
21. Mishra, V. K., Parikh, P. and Wu, Y.-F., Proc. IEEE 90, 1022(2002).Google Scholar
22. Trew, R. J., Proc. IEEE 90, 1032(2002).Google Scholar
23. Pearton, S. J., Ren, F., Zhang, A. P. and Lee, K. P., Mat. Sci. Eng. R.30, 55(2000).Google Scholar
24. Johnson, J. W., Ren, F., Pearton, S. J., Baca, A. G., Han, J., Dabiran, A. M. and Chow, P. P., J. Nanosci. Nanotech. 2, 325(2002).Google Scholar
25. Binari, S. C., Ikossi, K., Roussos, J. A., Kruppa, W., Park, D., Dietrich, H. B., Koleske, D. D., Wickenden, A. E. and Henry, R. L., IEEE Trans. Electron. Dev. 48, 465(2001).Google Scholar
26. Luo, B., Johnson, J. W., Kim, J., Mehandru, R. M., Ren, F., Gila, B. P., Onstine, A. H., Abernathy, C. R., Pearton, S. J., Baca, A. G., Briggs, R. D., Shul, R. J., Monier, C. and Han, J., Appl. Phys. Lett. 80, 1661(2002).Google Scholar
27. Gillespie, J., Fitch, R. C., Sewell, J., Dettmer, R., Via, G., Crespo, A., Jenkins, T., Luo, B., Mehandru, R., Kim, J., Ren, F., Gila, B. P., Onstine, A. H., Abernathy, C. R. and Pearton, S. J., IEEE Trans. Electron. Dev. 23, 505(2002).Google Scholar
28. Luo, B., Mehandru, R., Kim, J., Ren, F., Gila, B. P., Onstine, A. H., C. R. Abernathy Pearton, S. J., Fitch, R., Gillespie, J., Jenkins, T., Sewell, J., Via, D., Crespo, A. and Irokawa, Y., J. Electrochem. Soc., 149, G613 (2002).Google Scholar