No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We present a new synthesis method based on laser generation and processing of aerosol particles that can produce calcium phosphate coatings in a porous nanostructured configuration. The process uses laser ablation of crystalline hydroxyapatite targets to produce a calcium phosphate aerosol comprising micro- and nanoparticles that are processed and deposited on metallic substrates under well-controlled temperature and ambient conditions, creating a microporous calcium phosphate network suitable for growth of biogenic calcium phosphate materials. Laser ablation is carried out using a KrF excimer laser at fluences between 0.4 J/cm2 and 2.8 J/cm2 and temperatures ranging from 500°C to 760°C. X-ray diffraction and scanning electron microscopy measurements on samples deposited above 750°C show that the obtained material is crystalline hydroxyapatite with good mechanical stability. Its microstructure features a porous framework of partially sintered microparticles surrounded by nanoparticulate material.