Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T08:56:41.858Z Has data issue: false hasContentIssue false

Hybrid P3HT/CdSe Photovoltaic Cells: Effects of Nanocrystal Size and Device Aging

Published online by Cambridge University Press:  31 January 2011

Jihua Yang
Affiliation:
jihuayang@ufl.edu, University of Florida, Materials Science & Engineering, Gainesville, Florida, United States
Renjia Zhou
Affiliation:
rzhou@ufl.edu
Aiwei Tang
Affiliation:
awtang@ufl.edu, University of Florida, Materials Science & Engineering, Gainesville, Florida, United States
Jiangeng Xue
Affiliation:
jiangeng.xue@scholareone.com, University of Florida, Materials Science & Engineering, Gainesville, Florida, United States
Get access

Abstract

Hybrid solar cells based on conjugated polymers and colloidally synthesized inorganic nanoparticles have been recognized as an alternative to all-organic solar cells due to the intrinsically higher charge transport property in inorganic component. In this work, CdSe nanoparticles with different sizes, served as the electron acceptor, have been used together with poly(3-hexylthiophene) (P3HT) as the active layer for the hybrid solar cells. The power-conversion efficiency (ηp) of these devices strongly depends on the size of the CdSe nanoparticles, increasing from ηp ˜0.5% for 4.0 nm size nanoparticles to ηp ˜2.4% for 6.8 nm size nanoparticles under AM 1.5 G solar illumination. Furthermore, the devices also exhibit an unusual initial aging period when exposed to the air, which results in a significant enhancement in the short-circuit current, open-circuit voltage and power conversion efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J., Science 270, 1789 (1995).Google Scholar
2 Li, G., Shrotriya, V., Huang, J. S., Yao, Y., Moriarty, T., Emery, K., Yang, Y., Nature Mater. 4, 864 (2005).Google Scholar
3 Forrest, S. R., Nature 428, 911 (2004).Google Scholar
4 Tang, C. W., Appl. Phys. Lett. 48, 183 (1986).Google Scholar
5 Bozano, L., Carter, S. A., Scott, J. C., Malliaras, G. G., Brock, P.J., Appl. Phys. Lett. 74, 1132 (1999).Google Scholar
6 Huynh, W. U., Dittmer, J. J., Alivisatos, A. P., Science 295, 2425 (2002).Google Scholar
7 Greenham, N. C., Peng, X. G., Alivisatos, A. P., Phys. Rev. B 54, 17628 (1996).Google Scholar
8 Sun, B., Marx, E., Greenham, N. C., Nano Lett. 3, 961 (2003).Google Scholar
9 Beek, W. J. E., Wienk, M. M., Janssen, R. A. J., Adv. Mater. 16, 1009 (2004).Google Scholar
10 Huynh, W. U., X. Peng, Alivisatos, A. P., Adv. Mater. 11, 923 (1999).Google Scholar
11 Peng, Z., Peng, X., J. Am. Chem. Soc. 123, 183 (2001).Google Scholar
12 Alivisatos, A. P., J. Phys. Chem. 100, 13226 (2009).Google Scholar
13 Brus, L., J. Phys. Chem. 90, 2555 (1986).Google Scholar