Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T10:05:34.187Z Has data issue: false hasContentIssue false

Hydration Mechanisms of Silicate Glasses: Discussion of the Respective Role of ion Exchange and Water Permeation

Published online by Cambridge University Press:  26 February 2011

J.-C. Dran
Affiliation:
CSNSM/CNRS, BP1, 91406 Orsay, France
J.-C. Petit
Affiliation:
SESD/CEN-FAR, BP 6, 92265 Fontenay-aux-roses, France
L. Trotignon
Affiliation:
SESD/CEN-FAR, BP 6, 92265 Fontenay-aux-roses, France
A. Paccagnella
Affiliation:
Dipartimento di Ingegneria, Università di Trento, 38050 Mesiano, Italy
G. Delia Mea
Affiliation:
Dipartimento di Ingegneria, Università di Trento, 38050 Mesiano, Italy Unità CISM-GNSM di Padova, 35131 Padova, Italy
Get access

Abstract

The comparative leaching behavior of a soda-lime glass and of a simulated nuclear glass has been investigated through H and Na depth profiles obtained with resonant nuclear reaction analysis. It is shown that glass surface hydration involves both H+/Na+ ion exchange and permeation of molecular water, the first process being dominant at low temperature and solution ionic strength and the second for high values of these two parameters. The shape of the H profile as well as the response of H retention to thermal treatment indicate that on the nuclear glass, most of the molecular water is more weakly bonded than on the soda-lime glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bunker, B.C., in Scientific Basis for Nuclear Waste Management X, edited by Bates, J.K. and Seefeldt, W.B. (Mater. Res. Soc. Proc. 84, Pittsburgh PA, 1987) pp. 493507.Google Scholar
2. Strachan, D.M., Nucl. Chem. Waste Manag. 4, 177 (1983).Google Scholar
3. Grambow, B., PhD thesis, Freie Universität, Berlin (1984).Google Scholar
4. Pederson, L.R., Baer, D.R., McVay, G.L. and Engelhard, M.H., J. Non-Cryst. Solids, 86, 369 (1986).Google Scholar
5. Doremus, R.H., J. Non-Cryst. Solids 19, 137 (1975).Google Scholar
6. Smets, B.M.J. and Lommen, T.P.A., J. Phys. C9 43, 649 (1982).Google Scholar
7. Ernsberger, F.M., Proc. XIV Intern. Congr. on Glass, pp. 319322 (1986).Google Scholar
8. Tsong, I.S.T., Houser, C.A., White, W.B. and Power, G.L., J. Non-Cryst. Solids 38–39, 649 (1980).Google Scholar
9. Lanford, W.A., Davis, C., Lamarche, P., Laursen, T., Groleau, R. and Doremus, R.H., J. Non-Cryst. Solids 22/249 (1979).Google Scholar
10. Dran, J.-C., Delia Mea, G., Paccagnella, A., Petit, J.-C. and Trotignon, L., Phys. Chem. Glasses (in press).Google Scholar
11. Delia Mea, G., Dran, J.-C., Petit, J.-C., Bezzon, G. and Rossi-Alvarez, C., Nucl. Instr. Meth. Phys. Res. 218, 493 (1983).Google Scholar
12. Aines, R.D., Weed, H.C. and Bates, J.K., in Scientific Basis for Nuclear Waste Management X, edited by Bates, J.K. and Seefeldt, W.B. (Mater. Res. Soc. Proc. 84, Pittsburgh PA, 1987) pp. 547558.Google Scholar
13. Petit, J.-C., Delia Mea, G., Dran, J.-C., Magonthier, M.-C., Mando, P.A., Paccagnella, A. and Stefanini, A.A., submitted to Geochim. Cosmochim. Acta.Google Scholar
14. Doremus, R.H., Mehrotra, Y., Lanford, W.A. and Burmán, C., J. Mat. Sci. J18, 612 (1983).Google Scholar