Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T20:34:42.264Z Has data issue: false hasContentIssue false

Hydrazine oxidation at preferentially oriented Pt (100) nanowires array electrodes

Published online by Cambridge University Press:  26 January 2011

S. Garbarino
Affiliation:
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Bd Lionel Boulet, J3X 1S2, Varennes, Québec, CANADA
A. Ponrouch
Affiliation:
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Bd Lionel Boulet, J3X 1S2, Varennes, Québec, CANADA
E. Bertin
Affiliation:
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Bd Lionel Boulet, J3X 1S2, Varennes, Québec, CANADA
D. Guay
Affiliation:
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Bd Lionel Boulet, J3X 1S2, Varennes, Québec, CANADA
Get access

Abstract

In this study, platinum was electroplated onto bare Ti substrates (Pt black) and through a porous AAO membrane (Pt nanowires). The morphology of the deposits was observed by scanning electron microscopy. Preferential orientation along the (100) direction into the bulk material was evidenced through XRD analysis, as well as at the nanowire surface by using electrochemical characterization. These highly oriented Pt nanowires exhibited an increased activity for the electrocatalytic oxidation of hydrazine oxidation, as compared to Pt black.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Garbarino, S., Pereira, A., Hamel, C., Irissou, E., Chaker, M. and Guay, D., J. Phys Chem. C 114, 2980 (2010).Google Scholar
2 Ponrouch, A., Garbarino, S., Pronovost, S., Taberna, P.-L., Simon, P. and Guay, D., J. Electrochem. Soc. 157, K59 (2010).Google Scholar
3 Garbarino, S., Ponrouch, A., Pronovost, S. and Guay, D., Electrochem. Commun. 11, 1449 (2009).Google Scholar
4 Markovic, N., Gasteiger, H., Ross, P.N., J. Electrochem. Soc. 144, 1591 (1997).Google Scholar
5 Rosca, V. and Koper, M. T. M., Phys. Chem. Chem. Phys. 8, 2513 (2006).Google Scholar
6 Rosca, V. and Koper, M. T. M., Electrochim. Acta 53, 5199 (2008).Google Scholar
7 Perret, P., Brousse, T., Belanger, D. and Guay, D., J. Electrochem. Soc. 156, A645 (2009).Google Scholar
8 Ferreira, P.J. and Shao-Horn, Y., Electrochem. Solid-State Lett. 10, B60 (2007).Google Scholar
9 Solla-Gullon, J., Montiel, V., Aldaz, A. and Clavilier, J., J. Electroanal. Chem. 491, 69 (2000).Google Scholar
10 Trasatti, S and Petrii, O.A., Pure Appl. Chem. 63. 711 (1991).Google Scholar
11 Rodriguez, P., Herrero, E., Solla-Gullon, J., Vidal-Iglesias, F.J., Aldaz, A. and Feliu, J.M., Electrochim. Acta 50, 4308 (2005).Google Scholar
12 Bakos, I. and Horanyi, G., J. Electroanal. Chem 397, 105 (1995).Google Scholar
13 Solla-Gullon, J., Rodriguez, P., Herrero, E., Aldaz, A., Feliu, J.M., Phys. Chem. Chem. Phys. 10, 1359 (2008).Google Scholar
14 Alvarez-Ruiz, B., Gomez, R., Orts, J.M. and Feliu, J.M. J. Electrochem Soc. 149, D35 (2002).Google Scholar
15 Garcia, M.D., Marcos, M.L. and Gonzalez-Velasco, J., Electroanal. 8, 267 (1996).Google Scholar
16 Asazawa, K., Yamada, K., Tanaka, H., Oka, A., Taniguchi, M. and Kobayashi, T., Angew. Chem. Int. Ed. 46, 8024 (2007).Google Scholar