Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T21:31:06.208Z Has data issue: false hasContentIssue false

Hydrogen Adsorption in MOF-74 Studied by Inelastic Neutron Scattering

Published online by Cambridge University Press:  01 February 2011

Yun Liu
Affiliation:
yunliu@nist.gov, National Institute of Standards and Technology, Center for Neutron Research, 100 Bureau Drive, MS6102, Gaithersburg, MD, 20899, United States, 301-975-6235
Craig M. Brown
Affiliation:
craigy@nist.gov, NIST Center for Neutron Research, 100 Bureau Drive, MS6102, Gaithersburg, MD, 20899, United States
Dan A. Neumann
Affiliation:
dan@nist.gov, NIST Center for Neutron Research, 100 Bureau Drive, MS6102, Gaithersburg, MD, 20899, United States
Houria Kabbour
Affiliation:
kabbour@caltech.edu, California Institute of Technology, Division of Engineering and Applied Science, Pasadena, CA, 91125, United States
Channing C. Ahn
Affiliation:
cca@caltech.edu, California Institute of Technology, Division of Engineering and Applied Science, Pasadena, CA, 91125, United States
Get access

Abstract

Adsorption of hydrogen and the occupancy of different binding sites as a function of hydrogen loading in MOF-74 are studied using inelastic neutron scattering (INS). Hydrogen molecules are observed to fully occupy the strongest binding site before populating other adsorption sites. The comparison of the INS spectra at 4 K and 60 K indicates that hydrogen adsorbed at the strongest binding site is strongly bound and localized. We also show that when two hydrogen molecules are adsorbed into a single, attractive potential well, the shortest inter-H2 distance is about 3 Å, consistent with our previous observation of inter-H2 distance when adsorbed in two neighboring potential wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chahine, R., Benard, P., In Advance in cryogenic engineering; Kittel, P., Ed.; Plenum Press: New York, 1998; Vol. 34, p 1257.Google Scholar
2. Wong-Foy, A. G., Matzger, A. J., Yaghi, O. M., J. Am. Chem. Soc. 128, 34943495 (2006).10.1021/ja058213hGoogle Scholar
3. Kabbour, H., Baumann, T. F., Satcher, J. H. Jr, Saulnier, A., Ahn, C. C., Chem. Mater. 18, 60856087 (2006).10.1021/cm062329aGoogle Scholar
4. Dinca, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A., Long, J. R., J. Am. Chem. Soc. 128, 1687616883 (2006).Google Scholar
5. Dinca, M., Han, W. S., Liu, Y., Dailly, A., Brown, C. M., Long, J. R., Angew. Chem. Int. Ed. 46, 14191422 (2007).Google Scholar
6. Peterson, V. K., Liu, Y., Brown, C. M., Kepert, C. J., J. Am. Chem. Soc. 128, 1557815579 (2006).Google Scholar
7. Liu, Y., Kabbour, H., Brown, C. M., Neumann, D. A., Ahn, C. C., submitted (2007).Google Scholar
8. Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M., Yaghi, O. M., J. Am. Chem. Soc. 127, 15041518 (2005).Google Scholar
9. Rowsell, , C., J. L., Yaghi, , M., O. J. Am. Chem. Soc. 128, 13041315 (2006).Google Scholar
10. Liu, Y., Brown, C. M., Neumann, D. A., Peterson, V. K., Kepert, C., J. of Alloys and Compounds 446–447, 385 (2007).10.1016/j.jallcom.2006.12.106Google Scholar
11. Silvera, I. F., Rev. Mod. Phys. 52, 393452 (1980).10.1103/RevModPhys.52.393Google Scholar
12. Young, J. A., Koppel, J. U., Phys. Rev. 135, A603, (1964).Google Scholar
13. Udovic, T. J., Neumann, D. A., Leao, J., Brown, C. M., Instrum. Methods A517, 189 (2004).Google Scholar
14. Brown, C. M. et al. , Chem. Phys. Lett. 329, 311 (2003).10.1016/S0009-2614(00)01003-4Google Scholar
15. Liu, Y. et al. J. of Alloys and Compounds 446–447, 368 (2007).10.1016/j.jallcom.2007.01.113Google Scholar
16. FitzGerald, S. A. et al. , Phys. Rev. B 60, 6439 (1999).Google Scholar