Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T08:52:33.350Z Has data issue: false hasContentIssue false

Hydrogen diffusion in polycrystalline boron doped and undoped diamond.

Published online by Cambridge University Press:  17 March 2011

D. Ballutaud
Affiliation:
CNRS-LPSC, 1 place Aristide Briand, 92195 Meudon cedex, France
A. Boutry-Forveille
Affiliation:
CNRS-LPSC, 1 place Aristide Briand, 92195 Meudon cedex, France
J.-M. Laroche
Affiliation:
CNRS-LPSC, 1 place Aristide Briand, 92195 Meudon cedex, France
N. Simon
Affiliation:
Institut Lavoisier, Université de Versailles-St-Quentin en Yvelines, 78035 Versailles cedex, France
H. Girard
Affiliation:
Institut Lavoisier, Université de Versailles-St-Quentin en Yvelines, 78035 Versailles cedex, France
M. Herlem
Affiliation:
Institut Lavoisier, Université de Versailles-St-Quentin en Yvelines, 78035 Versailles cedex, France
A. Etcheberry
Affiliation:
Institut Lavoisier, Université de Versailles-St-Quentin en Yvelines, 78035 Versailles cedex, France
Get access

Abstract

Hydrogen (deuterium used as tracer) diffusion experiments were performed on undoped and boron doped diamond films ([B] = 1019and 1020 cm−3) grown by plasma CVD or hot-filament assisted CVD. The samples were exposed either to a radiofrequency plasma or a microwave plasma at different temperatures between 400°C and 900°C. The deuterium profiles were analysed by secondary ion mass spectrometry (SIMS). The deuterium diffusion was explained mainly in term of trapping on intergranular defects. The passivation of boron acceptors, by B-D complex formation in the deuterium diffused superficial layers of the diamond films, was followed by electrochemical and mercury probe capacitance measurements. The results suggest a strong decrease of the free carrier density, which is in accordance with passivation of free carriers by deuterium trapping on dopant.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamanaka, S., Takeuchi, D., Watanabe, H., Okushi, H. and Kajimura, K., Appl. Surf. Science 159–160, 567 (2000).Google Scholar
2. Ballutaud, D., Jomard, F., Theys, B., Mer, C., Tromson, D. and Bergonzo, P., Diam. Rel. Mater. 10, 405 (2001)Google Scholar
3. Tryk, D. A., Tsunozaki, K., Rao, Tata N. and Fujishima, A., Diam. Rel. Mater. 10, 1804 (2001).Google Scholar
4. CSEM, Jaquet-Droz 1, CH-2007 Neuchâtel (Switzerland).Google Scholar
5. Jany, C., Foulon, F., Bergonzo, P., Tardieu, A. and Gicquel, A., Proceeding of the fifth international symposium on diamond materials (Paris, September 1997), Electrochem. Soc. Proc. 97-32, 208(1998).Google Scholar
6. Hydrogen in crystalline semiconductors, Pearton, S. J., Corbett, J. W. and Stavola, M., (Springer Series in Material Science, Spinger Verlag, Berlin, 1992) pp. 200233.Google Scholar
7. Nickel, N. H., Jackson, W. B. and Walker, J., Phys. Rev. B 53 (12), 7750 (1996).Google Scholar
8. Chevallier, J., Lusson, A., Ballutaud, D., Theys, B., Jomard, F., Deneuville, A., Bernard, M., Gheeraert, E. and Bustarret, E., Diam. Rel; Mater. 10, 399 (2001).Google Scholar