Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T03:10:17.057Z Has data issue: false hasContentIssue false

Hydrogen Migration in Single Crystalline ZnO

Published online by Cambridge University Press:  01 February 2011

Klaus Magnus Håland Johansen
Affiliation:
klausmj@fys.uio.no, University of Oslo, Centre for Materials Science and Nanotechnology, Pb 1126 Blindern, Oslo, 0318, Norway, +4799578163
Jens Sherman Christensen
Affiliation:
jenssherman@gmail.com, University of Oslo, Department of Physics, PB 1048 Blindern, Oslo, 0316, Norway
Edouard V. Monakhov
Affiliation:
edouard.monakhov@fys.uio.no, University of Oslo, Department of Physics, PB 1048 Blindern, Oslo, 0316, Norway
Andrej Yu. Kuznetsov
Affiliation:
andrej.kuznetsov@fys.uio.no, University of Oslo, Department of Physics, PB 1048 Blindern, Oslo, 0316, Norway
Bengt Gunnar Svensson
Affiliation:
b.g.svensson@fys.uio.no, University of Oslo, Department of Physics, PB 1048 Blindern, Oslo, 0316, Norway
Get access

Abstract

Hydrogen has been proposed as one of the contributors to the native n-type doping in as-grown Zinc Oxide and can also be used as an active (intentional) n-type dopant. In this work we have employed Secondary Ion Mass Spectrometry (SIMS) to study deuterium diffusion profiles in single crystalline ZnO. The samples used are hydrothermally grown, high-resistive (10 kΩ cm) monocrystalline ZnO implanted with deuterium to a dose of 1×1015 cm−2 yielding a peak concentration of approximately 5 × 1018 cm−3 at a depth of 2.2 µm. Diffusion profiles have been studied after 30 minutes isochronal heat treatments from 100ºC up to 400ºC in steps of 50ºC. The observed redistribution can be explained by employing a diffusion model which includes trapping of 2H by Li-impurities and an activation energy of 0.85 eV is extracted for the diffusion of 2H.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nickel, N. H. and Brendel, K., Phys. Rev. B 68, 193303 (2003).Google Scholar
2. Hofmann, D. M., Hofstaetter, A., Leiter, F., Zhou, H., Henecker, F., Meyer, B. K., Orlinskii, S. B., Schmidt, J., and Baranov, P. G., Phys. Rev. Lett. 88, 045504 (2002).Google Scholar
3. Thomas, D. G. and Lander, J. J., The Journal of Chemical Physics 25, 1136 (1956).Google Scholar
4. Ip, K., Overberg, M. E., Heo, Y. W., Norton, D. P., Pearton, S. J., Stutz, C. E., Luo, B., Ren, F., Look, D. C., and Zavada, J. M., Applied Physics Letters 82, 385 (2003).10.1063/1.1539927Google Scholar
5. Nickel, N. H., Physical Review B (Condensed Matter and Materials Physics) 73, 195204 (pages 9) (2006).Google Scholar
6. Theys, B., Sallet, V., Jomard, F., Lusson, A., Rommeluere, J.-F., and Teukam, Z., Journal of Applied Physics 91, 3922 (2002).Google Scholar
7. Wardle, M. G., Goss, J. P., and Briddon, P. R., Physical Review Letters 96, 205504 (2006).Google Scholar
8. Campbell, S. A., The science and enginering of microelectronic fabrication (Oxford University Press, 2001), page 45.Google Scholar
9. Monakhov, E. V., Svensson, B. G., Linnarsson, M. K., Magna, A. L., Spinella, C., Bongiorno, C., Privitera, V., Fortunato, G., and Mariucci, L., Applied Physics Letters 86, 151902 (pages 3) (2005).10.1063/1.1899765Google Scholar
10. Monakhov, E. V., Christensen, J. S., Maknys, K., Svensson, B. G., and Kuznetsov, A. Y., Applied Physics Letters 87, 191910 (pages 3) (2005)10.1063/1.2128059Google Scholar
11. Ip, K., Overberg, M. E., Heo, Y. W., Norton, D. P., Pearton, S. J., Kucheyev, S. O., Jagadish, C., Williams, J. S., Wilson, R. G., and Zavada, J. M., Applied Physics Letters 81, 3996 (2002).10.1063/1.1524033Google Scholar
12. Borrnert, F., Lavrov, E. V., and Weber, J., Physical Review B (Condensed Matter and Materials Physics) 75, 205202 (pages 5) (2007).Google Scholar
13. Li, X., Keyes, B., Asher, S., Zhang, S. B., Wei, S.-H., Coutts, T. J., Limpijumnong, S., and Walle, C. G. V. de, Applied Physics Letters 86, 122107 (pages 3) (2005).10.1063/1.1886256Google Scholar
14. Wardle, M. G., Goss, J. P., and Briddon, P. R., Physical Review B (Condensed Matter and Materials Physics) 71, 155205 (pages 10) (2005).10.1103/PhysRevB.71.155205Google Scholar
15. Shi, G. A., Stavola, M., and Fowler, W. B., Physical Review B (Condensed Matter and Materials Physics) 73, 081201 (pages 3) (2006).Google Scholar
16. Janson, M. S., Hallén, A., Linnarsson, M. K., and Svensson, B. G., Phys. Rev. B 64, 195202 (2001).10.1103/PhysRevB.64.195202Google Scholar
17. Look, D. C., Reynolds, D. C., Sizelove, J. R., Jones, R. L., Litton, C. W., Cantwell, G., and Harsch, W. C., Solid State Communications 105, 399 (1998).Google Scholar