Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T13:11:57.116Z Has data issue: false hasContentIssue false

Hydrogen Production via Methane Decomposition Using Ni and Ni-Cu Catalysts Supported on MgO, Al2O3 and MgAl2O4

Published online by Cambridge University Press:  01 February 2011

José F. Pola
Affiliation:
Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109, Chihuahua, Chih., Mexico
Miguel A. Valenzuela
Affiliation:
Lab. Catálisis y Materiales. ESIQIE-Instituto Politécnico Nacional. Zacatenco, 07738, México D.F., Mexico. Email: mavalenz@ipn.mx
Iván A. Córdova
Affiliation:
Lab. Catálisis y Materiales. ESIQIE-Instituto Politécnico Nacional. Zacatenco, 07738, México D.F., Mexico. Email: mavalenz@ipn.mx
J. A. Wang
Affiliation:
Lab. Catálisis y Materiales. ESIQIE-Instituto Politécnico Nacional. Zacatenco, 07738, México D.F., Mexico. Email: mavalenz@ipn.mx
Get access

Abstract

Ni (10%) and Ni-Cu (50 and 25%, respectively) catalysts supported on alumina, magnesia and magnesium aluminate were synthesized. The characterization was carried out by X-ray diffraction, nitrogen physisorption, temperature programmed-reduction, Raman spectroscopy and SEM. The catalysts were tested in the methane decomposition reaction using a tubular fixed bed reactor operated in the range of 500-580°C under atmospheric pressure. A higher activity was observed with the bimetallic catalysts supported on alumina and magnesium aluminate. These results were explained in terms of Ni-Cu alloy formation and weak metal-support interaction. In the case of monometallic catalysts, a strong metal-support interaction was detected, which revealed the lowest activity and stability compared with the bimetallic catalysts. The formed carbon was a combination of amorphous and graphite.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zūttel, A., Remhof, A., Borgschulte, A. and Friedrichs, O., Phil. Trans. R. Soc. A 368, 3329 (2010).Google Scholar
2. Edwards, P. P., Kuznetsov, V. L. and David, W. I. F., Phil. Trans. R. Soc. A 365, 1043 (2007).Google Scholar
3. Gosselink, J.W., Int. J. Hydrogen Energy 27, 1125 (2002).Google Scholar
4. Sartbaeva, A., Kuznetsov, V. L., Wells, S. A. and Edwards, P. P., Energy Environ. Sci. 1, 79 (2010).Google Scholar
5. Odgen, J.M., Annu. Rev. Energy Environ. 24, 227 (1999).Google Scholar
6. Navarro, R.M., Peña, M.A. and Fierro, J.L.G., Chem. Rev. 107, 3952 (2007).Google Scholar
7. Holladay, J.D., Hu, J., King, D.L. and Wang, Y., Cat. Today 139, 244 (2009).Google Scholar
8. Rostrup-Nielsen, J.R., Sehested, J. and Norskov, J.K., Adv. Catal. 47, 65 (2002).Google Scholar
9. Abbas, H.F. and Daud, W.M.A. Wan, Int.J.Hydrogen Energy 35, 1160 (2010).Google Scholar
10. Li, K., Wang, H., Wei, Y. and Yan, D., Appl.Catal B:Environ. 97, 361 (2010).Google Scholar
11. Chen, Z. and Elnashai, S.S. E. H., AICHE J., 51, 1467 (2005).Google Scholar
12. Steinfeld, A., Solar Energy, 78, 603 (2005).Google Scholar
13. Ekambaram, S., J. Alloys Comp 448, 238 (2010).Google Scholar
14. Kelly, N. A., Gibson, T.L., Int. J. Hydrogen Energy 31, 1658 (2006).Google Scholar
15. Tanksale, A., Beltramini, J. N. and Lu, G.Q. Max, Renew. Sustain. Energy, Rev. 14, 166 (2010).Google Scholar
16. McKinlay, J.B. and Harwood, C.S., Curr. Op. Biotech. 21, 244 (2010).Google Scholar
17. Poirie, M.G. and Zapundzhiev, C., Int J Hydrogen Energy 22, 429 (1997).Google Scholar
18. Steinberg, M., Int J. Hydrogen Energy 23, 419 (1998).Google Scholar
19. Zhang, T. and Amiridis, M.D., Appl. Catal. A: General 167, 161 (1998).Google Scholar
20. Takenaka, S., Ogihara, H., Yamanaka, I. and Otsuka, K., Appl. Catal. A: General, 217, 101 (2001).Google Scholar
21. Choudhary, T.V., Aksoylu, E. and Goodman, W., Catal. Rev. 45, 151 (2003).Google Scholar
22. Valenzuela, M.A., Gonzalez, O., Cordova, I., Flores, S. and Wang, J.A., Chem. Eng. Trans. 4, 61 (2004).Google Scholar
23. Otsuka, K. and Takenaka, S., Catal. Surveys Asia, 8, 77 (2004).Google Scholar
24. Couttenye, R.A., Vila, M.H. De and Suib, S.L., J. Catal. 233, 317 (2005).Google Scholar
25. Gonzalez, O., Valenzuela, M.A. and Wang, J.A., Mater. Res. Soc. Symp. Proc. 885E, 49.1 (2006).Google Scholar
26. Salmones, J., Wang, J.A., Valenzuela, M.A., Sanchez, E. and Garcia, A., Catal. Today 148, 134 (2009).Google Scholar
27. Guevara, J. C., Wang, J. A., Chen, L. F., Valenzuela, M. A., Salas, P., García-Ruiz, A., Toledo, J. A., Cortes-Jácome, M.A., Angeles-Chavez, C. and Novaro, O., Int. J. Hydrogen Energy 35, 3509 (2010).Google Scholar
28. Hernandez-Pichardo, M.L., Valenzuela, M.A., Paredes, S.P., Angel, P. del and Fuente, J.A. Montoya de la, J. New Mater. Electrochem. Syst. 13, 271 (2010).Google Scholar
29. Zapata, B., Valenzuela, M.A., Palacios, J., Torres-Garcia, E., Int. J. Hydrogen Energy, 35 12091 (2010).Google Scholar
30. Ahmed, S., Aitani, A., Rahman, F., Al-Dawood, A., Al-Muhaish, F., Appl.Catal.A:General, 359, 1 (2009).Google Scholar
31. Chen, J., Li, Y., Ma, Y., Qin, Y., Chang, L., Carbon, 39, 1467 (2001).Google Scholar
32. Chen, J., Li, Y., Li, Z., Zhang, X., Appl. Catal. A: General 269, 179 (2004).Google Scholar
33. Quian, W., Liu, T., Wei, F., Wang, Z., Luo, G., Li, Y., Appl. Catal. A: General, 260, 223 (2004).Google Scholar
34. Li, D., Chen, J., Li, Y., Int. J. Hydrogen Energy 34, 299 (2009).Google Scholar
35. Wang, H., Baker, R.T.K., J. Phys. Chem B, 108, 20273 (2004).Google Scholar
36. Li, J., Lu, G., Wang, K. Li, J. Mol. Catal. A: Chem. 221, 105 (2004).Google Scholar
37. Dussault, L., Dopin, J.C., Guimon, C., Monthioux, M., Latorre, N., Ubieto, T., Romeo, E., Royo, C., Monzon, A., J. Catal., 251, 223 (2007).Google Scholar
38. Cunha, A.F., Orfao, J.J.M., Figueiredo, J.L., Int. J. Hydrogen Energy 34, 4763 (2009).Google Scholar
39. Gonzalez, I., Jesus, J.C.De, Navarro, C. Urbina de, Garcia, M., Catal. Today 149, 352 (2010).Google Scholar
40. Fierro, G., Jacono, M. Lo, Inversi, M., Porta, P., Cioci, F., Lavecchia, R., Appl. Catal. A:General, 137, 327 (1996).Google Scholar
41. Garcia, L., Benedicto, A., Romeo, E., Salvador, M.L., Arauzo, J., Bilbao, R., Energy Fuels 16, 1222 (2002).Google Scholar
42. Chen, I., Chen, F.L., Ind. Eng. Chem. Res., 29, 534 (1990).Google Scholar
43. Pinilla, J.L., Suelves, I., Lazaro, M.J., Moliner, R., Palacios, J.M., Appl. Catal. A: General 363, 199 (2009).Google Scholar
44. Jorio, A., Pimenta, M.A., Filho, A.G. Souza, Saito, R., Dresselhaus, G., Dresselhaus, M.S., New J. Physics 5, 1391 (2003).Google Scholar