Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T00:59:28.294Z Has data issue: false hasContentIssue false

Hydrogen Storage Properties, Metallographic Structures and Phase Transitions of Mg-based Alloys Prepared by Super Lamination Technique

Published online by Cambridge University Press:  01 February 2011

Nobuhiko Takeichi
Affiliation:
n.takeichi@aist.go.jp, AIST, IKEDA, Japan
Koji Tanaka
Affiliation:
koji.tanaka@aist.go.jp, AIST, IKEDA, Japan
Hideaki Tanaka
Affiliation:
tanaka.hide@aist.go.jp, AIST, IKEDA, Japan
Nobuhiro Kuriyama
Affiliation:
kuriyama-n@aist.go.jp, AIST, IKEDA, Japan
Tamotsu T Ueda
Affiliation:
t-ueda@ai-h.aisin.co.jp, IMARA, Kariya, Japan
Makoto Tsukahara
Affiliation:
tsuka@ai-i.aisin.co.jp, IMARA, Kariya, Japan
Hiroshi Miyamura
Affiliation:
miyamura@mat.usp.ac.jp, The University of Shiga Prefecture, Hikone, Japan
Shiomi Kikuchi
Affiliation:
kikuchis@mat.usp.ac.jp, The University of Shiga Prefecture, Hikone, Japan
Get access

Abstract

We have prepared Mg/Pd laminate composites with (Mg/Pd)=6, 3 and 2.5 atom ratios, by a super lamination technique. The homogeneous Mg-Pd intermetallic compounds, Mg6Pd, Mg3Pd and Mg5Pd2, are formed during the initial activation process. We investigated the hydrogen storage properties of these materials. The compounds can reversibly absorb and desorb a large amount of hydrogen, up to 1.46˜0.9 H/M, at 573 K. Except for the Mg5Pd2-hydrogen system, the pressure composition-isotherms show two plateaux. The mechanism of the phase transition during hydrogenation/dehydrogenation was analyzed by in-situ XRD measurements. These intermetallic compounds absorb and desorb hydrogen through reversible multistage disproportionation and recombination processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stampfer, J. F. Jr, Holley, C. E. Jr, and Suttle, J. F.: J. Am. Chem. Soc. 82, 3504 (1960).Google Scholar
2. Orimo, S., Fujii, H., and Ikeda, K.: Acta Mater. 45, 331 (1998).Google Scholar
3. Liang, G., Huot, J., Boily, S., and Schulz, R.: J. Alloy. Compd. 305, 239 (2000).Google Scholar
4. Reilly, J. J. and Wiswall, R. H.: Inorg. Chem. 6, 2220 (1967).Google Scholar
5. Reilly, J. J. and Wiswall, R. H.: Inorg. Chem. 7, 2254 (1968).Google Scholar
6. Zaluski, L., Zaluska, A., Ström-Olsen, J.O., J. Alloys Compd. 253–254, 70 (1995).Google Scholar
7. Guthrie, S.E., Thomas, G.J., in Proceedings of the 43rd International SAMPE Symposium, edited by Kliger, H.S. (Advancement of Materials and Process Engineer, Covina 1998), p. 1105.Google Scholar
8. Akiyama, T., Isogai, H., Yagi, J., Int. J. Self-Propagating High-Temp. Synth. 4(1), 69 (1995).Google Scholar
9. Ueda, T. T., Tsukahara, M., Kamiya, Y., and Kikuchi, S.: J. Alloy. Compd. 386, 253 (2005).Google Scholar
10. Huot, J., Yonkeu, A., Dufour, J.: J. Alloy. Compd. (2008) doi:10.1016/j.jallcom.2008.07.034.Google Scholar
11. Takeichi, N., Tanaka, K., Tanaka, H., Ueda, T. T., Kamiya, Y., Tsukahara, M., Miyamurac, H., Kikuchi, S.: J. Alloy. Compd. 446–447, 543 (2007).Google Scholar