Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T17:29:43.218Z Has data issue: false hasContentIssue false

Hydrothermal Synthesis and Electrochemical Properties of Layered Vanadates

Published online by Cambridge University Press:  10 February 2011

J. Livage
Affiliation:
Chimie de la Matière CondenséeUniversité Pierre et Marie Curie, 4 place Jussieu, 75252 Paris - France
L. Boujhedja
Affiliation:
Chimie de la Matière CondenséeUniversité Pierre et Marie Curie, 4 place Jussieu, 75252 Paris - France
S. Castro-Garcia
Affiliation:
Milieux Désordonnés et HétérogénesUniversité Pierre et Marie Curie, 4 place Jussieu, 75252 Paris - France
C. Julien
Affiliation:
Milieux Désordonnés et HétérogénesUniversité Pierre et Marie Curie, 4 place Jussieu, 75252 Paris - France
Get access

Abstract

The synthesis of vanadates from aqueous solutions leads to a large variety of crystalline materials. The nature of molecular precursors mainly depends on pH and three different pH ranges can be distinguished. Cationic precursors are formed at low pH. Precipitation is obtained via the addition of anions leading to materials in which [VO6] octahedra are linked through anions. V2O5,nH2O gels are formed around the Point of Zero Charge (pH=2). They are made of ribbon-like particles and exhibit interesting properties as cathodic materials. Electrochemical properties depend on the drying procedure. Moreover, intercalation reactions lead to a whole range of new inorganic and organic bronzes. Chain metavanadates are precipitated from anionic precursors in basic aqueous solutions. Vanadium coordination decreases and they are made of corner sharing [VO4] tetrahedra. Layered structures are formed in the pH range where negatively charged species such as [VO(OH)4(OH2)] should behave as precursors. Condensation occurs via V-OH groups in the equatorial plane leading to layered structures in which cations are inserted between the vanadate planes. Some reduction occurs when organic cations such as tetramethyl ammonium [N(CH3)4]+ are used leading to mixed valence vanadates. Electron delocalization is observed in these compounds but Li insertion is hindered by large organic cations. Better electrochemical properties are observed with smaller inorganic cations. Fibrous crystals of NaV3O8,H2O are formed in the presence of NaOH whereas the mixed valence bronze α'-NaxV2O5 is obtained when both NaOH and TMAOH react with V2O5. This fibrous morphology appears to improve diffusion processes at the electrode-electrolyte interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Manthiram, A., Kim, J., Chem. Mater. 10, p. 2895 (1998)Google Scholar
2. Livage, J., Solid State Ionics, 86–88, p. 935 (1996)Google Scholar
3. Chirayil, T., Zavalij, P.Y., Whittingham, M.S., Chem. Mater. 10, p. 2629 (1998)Google Scholar
4. Baes, C.F., Mesmer, R.E., The Hydrolysis of Cations, Wiley, New York (1976)Google Scholar
5. Henry, M., Jolivet, J.P., Livage, J., Structure and Bonding, 77, p. 155 (1992)Google Scholar
6. Pope, M.T., Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin, 1983 Google Scholar
7. Jacobson, A.J., Johnson, J.W., Brody, J.F., Scanlon, J.C., Lewandowski, J.T., Inorg. Chem. 24, p.1782 (1985)Google Scholar
8. Clearfield, A., Chem. Rev. 88, p. 1225 (1988)Google Scholar
9. Livage, J., Chem. Mater. 3, p. 578 (1991)Google Scholar
10. Baddour, R., Pereira-Ramos, J.P., Messina, R., Perichon, J., J. Electroanal. Chem. 314, p. 81 (1991)Google Scholar
11. Coustier, F., Passerini, S., Smyrl, H.W., J. Electrochem. Soc. 145 p. L73 (1998)Google Scholar
12. Bach, S., Pereira-Ramos, J.P., Baffier, N., Messina, R., Solid State Ionics, 28–30, p. 886 (1988)Google Scholar
13. Leroux, F., Koene, B.E., Nazar, L.F., J. Electrochem. Soc. 143, p. L181 (1996)Google Scholar
14. Wong, H.P., Dave, B.C., Leroux, F., Harreld, J., Dunn, B., Nazar, L.F., J. Mater. Chem. 8, p. 1019 (1998)Google Scholar
15. Evans, H.T., Zeit. Krist. p. 257 (1960 Google Scholar
16. Roman, P., José, A. San, Luque, A., Gutiérez-Zorilla, J.M., Inorg. Chem. 32, p. 775 (1993)Google Scholar
17. Averbuch-Pouchot, M-T., Durif, A., Eur. J. Solid State Inorg. Chem. 31, p. 567 (1994)Google Scholar
18. Wéry, A.S., Gutiérez-Zorillaz, J.M., Luque, A., Ugalde, M., Romazn, P., Chem. Mater. 8, p. 408 (1996)Google Scholar
19. Ostrowetsky, S., Bull. Soc. Chim. France, 1012, p. 1018 (1964)Google Scholar
20. Chirayil, T., Zavalij, P.Z., Whittingham, M.S., Chem. Mater. 10, p. 2629 (1998)Google Scholar
21. Chirayil, T.G., Boylan, E.A., Mamak, M., Zavalij, P., Whittingham, M.S., Chem. Commun. p. 33 (1997)Google Scholar
22. Chirayil, T., Zavalij, P.Z., Whittingham, M.S., Chem. Mater. 10, p. 2629 (1998)Google Scholar
23. Chirayil, T., Zavalij, P.Y., Whittingham, M.S., J. Mater. Chem. 7, p. 2193 (1997)Google Scholar
24. Zavalij, P.Y., Whittingham, M.S., Boylan, E.A., Pecharsky, V.K., Jacobson, R.A., Zeit. Krist. 211, p. 464 (1996)Google Scholar
25. Bouhedja, L., Castro-Garcia, S., Livage, J., Julien, C., Ionics (in press)Google Scholar
26. Ueda, Y., Chem. Mater. 10, p. 2653 (1998)Google Scholar
27. Carpy, A., Galy, J., Acta Cryst. B31, p. 1481 (1975)Google Scholar
28. Schnering, H.G. van, Grin, Yu, Kaupp, M., Somer, M., Kremer, R.K., Jepsen, O., Zeit. Krist. 213, p. 246 (1998)Google Scholar
29. Wang, G., Pistoia, G., J. Electroanal. Chem. 302, p. 275 (1991)Google Scholar
30. Tossici, R., Marassi, R., Berrettoni, M., Stizza, S., Pistoia, G., Solid State Ionics, 67, p. 77 (1993)Google Scholar
31. Pope, M.T., Müller, A., Angew. Chem. Int. Ed. Engl. 30, p. 34 (1991)Google Scholar