Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:22:41.995Z Has data issue: false hasContentIssue false

Identification of Chalcogen Defects in Silicon

Published online by Cambridge University Press:  28 February 2011

Franz Beeler
Affiliation:
Max-Planck-Institut für Festkörperforschung D-7000 Stuttgart 80, Federal Republic of Germany
Matthias Scheffler
Affiliation:
Physikalisch-Technische Bundesanstalt, PF 3345, D-3300 Braunschweig, Federal Republic of Germany
Ove Jepsen
Affiliation:
Max-Planck-Institut für Festkörperforschung D-7000 Stuttgart 80, Federal Republic of Germany
Olle Gunnarsson
Affiliation:
Max-Planck-Institut für Festkörperforschung D-7000 Stuttgart 80, Federal Republic of Germany
Get access

Abstract

We show how self-consistent total-energy calculations can be used to identify the position of defects in semiconductors. Despite intensive experimental research on S, Se and Te point defects in Si, it has remained unclear whether these impurities occupy substitutional or Td-interstitial sites. Our Green-function total-energy calculations show that the substitutional site is favored by several eV and therefore the stable defect position is identified as substitutional. We further consider the formation energies of distant defect pairs consisting of a substitutional chalcogen and a Si self-interstitial and we study the reaction where the two constituents change places.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Wagner, P., Holm, C., Sirtl, E., Oeder, R., and Zulehner, W., in Festkbrperprobleme, edited by Grosse, P. (Vieweg, Braun-schweig, 1984) Vol. XXIV, p. 191 Google Scholar
2) DeLeo, G.G., Fowler, W.B., and Watkins, G.D., Phys.Rev. B29, 3193 (1984)Google Scholar
3) Jantsch, W., Wtnstel, K.. Kumagai, O., and Vogl, P., Phys.Rev. B25, 5515 (1982)CrossRefGoogle Scholar
4) Grimmeiss, H.G., Janzen, E., Ennen, H., Schirmer, O., Schneider, J., Warner, R., Holm, C., Sirtl, E., and Wagner, P., Phys.Rev. B24, 4571 (1982)Google Scholar
5) Janzen, E., Stedman, R., Grossmann, G., and Grimmeiss, H.G., Phys.Rev. B29, 1907 (1984)CrossRefGoogle Scholar
6) Ludwig, G.W., Phys.Rev. 137, A1520 (1965)Google Scholar
7) Niklas, J.R., and Spaeth, J.-M., Solid State Commun. 46, 121 (1983)Google Scholar
8) Greulich-Weber, S., Niklas, J.R., and Spaeth, J.-M., J.Phys. C: Solid State Phys., 17, L911 (1984)Google Scholar
9) Janzen, E., Grimmeiss, H.G., Lodding, A., and Deline, Ch., J.Appl.Phys. 53, 7367 (1982)Google Scholar
10) Gunnarsson, O., Jepsen, O., and Andersen, O.K., Phys.Rev. B27, 7144 (1983)Google Scholar
11) Hedin, L. and Lundqvist, B.I., J.Phys. C4, 2064 (1971)Google Scholar
12) Beeler, F., Jepsen, O., Gunnarsson, O., Andersen, O.K., and Scheffler, M., to be publishedGoogle Scholar
13) Scheffler, M., Beeler, F., Jepsen, O., Gunnarsson, O., Andersen, O.K., and Bachelet, G.B., in Proceedings of the 13th International Conference on Defects in Semiconductors, edited by Kimerling, L.C. and Parsey, J.M. Jr, (The Metal-lurgical Society of AIME, 1985), Vol. 14a, p. 45.Google Scholar
14)The results presented in this paper are obtained using the pure local-density approximation. Due to this approximation and the neglect of the discontinuity of the exchange-correlation functional derivative the band gap of Si is about half of the experimental value. The results presented here were calculated with this too small gap. They therefore differ somewhat from those in ref. 13, where the conduction band was shifted in order to correct the band gap. See also the discussion in ref. 12.Google Scholar
15) Bar-Yam, Y., and Joannopoulos, J.D., Phys.Rev. Lett. 52, 1129 (1984)Google Scholar
16) Car, R., Kelly, P.J., Oshiyama, A., and Pantelides, S.T., Phys.Rev.Lett. 52, 1814 (1984)CrossRefGoogle Scholar