Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T04:59:13.087Z Has data issue: false hasContentIssue false

Identity of the Nl8 Epr Spectrum with Thermal Donors in Silicon+

Published online by Cambridge University Press:  28 February 2011

Keon M. Lee
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. M. Trombetta
Affiliation:
Sherman Fairchild Laboratory, Department of Physics, Lehigh University, Bethlehem, PA 18015
G. D. Watkins
Affiliation:
Sherman Fairchild Laboratory, Department of Physics, Lehigh University, Bethlehem, PA 18015
Get access

Abstract

The effect of uniaxial stress on the NL8 EPR spectrum in 450°C heattreated silicon containing thermal donors (TD's) is described. Changes in the relative amplitudes of the NL8 spectral components are interpreted as arising from electronic redistribution between the differently oriented defects. These changes are consistent in sign and magnitude with those predicted for TD+ from observed stress effects on the TD IR and DLTS spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Oehrlein, G. S. and Corbett, J. W., in Defects in Semiconductors II, Mahajan, S. and Corbett, J. W., eds. (North Holland, New York, 1983), p. 107.Google Scholar
2. Wagner, P., Holm, C., Sirtl, E., Oeder, R., and Zulehner, W., in Festk~rperprobleme (Advances in Solid State Physics), Vol. XXIV, Grosse, P., ed., (Viewig, Braunschweig, 1984) p. 191.Google Scholar
3. Bourret, A., in 13th Int. Conf. on Defects in Semiconductors, Kimerling, L. C. and Parsey, J. M. Jr, eds., (The Metallurgical Soc. of AIME, New York, 1985) p. 129.Google Scholar
4. Wruck, D. and Gaworzewski, P., phys. stat. sol. (a) 56, 557 (1979).CrossRefGoogle Scholar
5. Pajot, B., Compain, H., Lerouille, J., and Clerjaud, B., Physica 117/118B, 110 (1983).Google Scholar
6. Oeder, R. and Wagner, P., in Defects in Semiconductors II, op. cit., p. 171.Google Scholar
7. Kimerling, L. C. and Benton, J. L., Appl. Phys. Lett. 39, 410 (1981).Google Scholar
8. Muller, S. N., Sprenger, M., Sieverts, E. G., and Ammerlaan, C. A. J., Sol. St. Comm. 25, 987 (1978).Google Scholar
9. Wagner, P. and Holm, C., in 13th Int. Conf. on Defects in Semiconductors, op. cit., p. 677.Google Scholar
10. Stavola, M., Lee, K. M., Nabity, J. C., Freeland, P. E., and Kimerling, L. C., this volume.Google Scholar
11. Benton, J. L., Lee, K. M., Freeland, P. E., and Kimerling, L. C., in 13th Int. Conf. on Defects in Semiconductors, op. cit., p. 647.Google Scholar
12. Farmer, J. W., Meese, J. M., Henry, P. M., and Lamp, C. D., in 13th Int. Conf. on Defects in Semiconductors., op. cit., p. 639.Google Scholar
13. Takippe, V. J., Chandrasekhar, H. R., Fisher, P., and Ramdas, A. K., Phys. Rev. B6, 2348 (1972).Google Scholar
14. Watkins, G. D. and Corbett, J. W., Phys. Rev. 121, 1001 (1961).Google Scholar
15. Wilson, D. K. and G. Feher 124, 1068 (1961).Google Scholar