Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T21:40:18.312Z Has data issue: false hasContentIssue false

Impact of Post Deposition Annealing on Characteristics of HfxZr1-xO2

Published online by Cambridge University Press:  31 January 2011

Dina Triyoso
Affiliation:
dina.triyoso@freescale.com, Freescale Semiconductor Inc., Technology Solutions Organization, 3501 Ed Bluestein Blvd; MD: K10, Austin, Texas, 78721, United States, 512-933-5912, 512-933-6962
Rama H. Hegde
Affiliation:
Rama.Hegde@freescale.com, Freescale Semiconductor Inc., Austin, Texas, United States
Rich Gregory
Affiliation:
ssginaz@cox.net, Freescale Semiconductor Inc., Austin, Texas, United States
Greg S. Spencer
Affiliation:
Greg.Spencer@freescale.com, Freescale Semiconductor Inc., Austin, Texas, United States
William Taylor Jr.
Affiliation:
Bill.Taylor@sematech.org, Freescale Semiconductor Inc., Austin, Texas, United States
Get access

Abstract

In this paper the impact of post deposition annealing in various ambient on electrical properties of hafnium zirconate (HfxZr1-xO2) high-k dielectrics is reported. ALD HfxZr1-xO2 films are annealed in a nitrogen and/or oxygen ambient at 500°C to 1000°C. Devices annealed at 500°C in N2 has lower equivalent oxide thickness (EOT) of 10Å without significant increase in gate leakage (Jg), threshold voltage (Vt) and only a slight decrease in transconductance (Gm) values compared to 500°C O2 annealed devices. Furthermore, the impact of annealing HfxZr1-xO2 films in a reducing ambient (NH3) is studied. Optimized NH3 anneal on HfxZr1-xO2 results in lower CET, improved PBTI, low sub-threshold swing values, comparable high-field Gm with only a minor degradation in peak Gm compared to control HfxZr1-xO2. Finally, the impact of laser annealing vs. RTP annealed HfxZr1-xO2 films are reported. Laser annealing helped further stabilize tetragonal phase of HfxZr1-xO2 without inducing void formation. Good devices with low leakage, low EOT and high mobility are obtained for laser annealed HfxZr1-xO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Triyoso, D.H., Hegde, R.I., Schaeffer, J.K., Roan, D., Tobin, P.J., Samavedam, S.B., White, B.E., Gregory, R., and Wang, X.-D., Appl. Phys. Lett. 88, 222901 (2006).Google Scholar
2 Hegde, R. I., Triyoso, D.H.. Samavedam, S. and White, B.E. Jr. , J. Appl. Phys. 101 074113 (2007).Google Scholar
3 Triyoso, D.H., Hegde, R.I., Schaeffer, J.K., Gregory, R., Wang, X.-D., Canonico, M., Roan, D., Hebert, E.A., Kim, K., Jiang, J., Rai, R., Kaushik, V., and Samavedam, S.B., J. Vac. Sci. Technol. B. 25 845–52 (2007).Google Scholar
4 Lee, B.H., Kang, L., Nieh, R., Qi, W.-J., and Lee, J.C., Appl. Phys. Lett. 76, 1926 (2000).Google Scholar
5 Jeong, S.W. and Roh, Y., J. Korean Phys. Soc. 50, 1865 (2007).Google Scholar
6 Triyoso, D.H., Tobin, P.J., White, B.E. Jr. , Gregory, R., and Wang, X.D., Appl. Phys. Lett. 89, 132903 (2006).Google Scholar
7 Lysaght, P.S., Foran, B., Bersuker, G., Chen, P.J., Murto, R.W., and Huff, H.R., Appl. Phys. Lett. 82 1266 (2003).Google Scholar
8 Hegde, R.I and Triyoso, D.H., J. App. Phys. 104 p.094110–8 (2008).Google Scholar
9 Triyoso, D.H., Spencer, G., Hegde, R.I., Gregory, R, Wang, X. D, Appl. Phys. Lett. 92 113501–1 (2008).Google Scholar