Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T05:58:41.096Z Has data issue: false hasContentIssue false

Implant Surface Modification by Biological Multi-layer Systems

Published online by Cambridge University Press:  11 February 2011

Regine Willumeit
Affiliation:
GKSS Research Center, Max-Planck-Str.1, 21502 Geesthacht, Germany
Helmut Kamusewitz
Affiliation:
GKSS Research Center, Max-Planck-Str.1, 21502 Geesthacht, Germany
Michael Schossig
Affiliation:
GKSS Research Center, Max-Planck-Str.1, 21502 Geesthacht, Germany
Jens Schröder
Affiliation:
GKSS Research Center, Max-Planck-Str.1, 21502 Geesthacht, Germany
Helmut Clemens
Affiliation:
GKSS Research Center, Max-Planck-Str.1, 21502 Geesthacht, Germany
Get access

Abstract

The current design of implants or implant materials is under the pressure of an increasing demand. In our society we find more and more active older people with an increasing life time. On the other hand it can be observed that also for younger people implants become more and more necessary due to sport or accidents. As a consequence the development of new surgery strategies as well as new materials systems is needed. In this work we present the idea of creating a metal implant surface which mimics a cell membrane or at least parts of it. Scanning electron and atomic force microscopy investigations show that a multilamellar closed lipid layer can be prepared and that this layer resembles the same contact angle observed for the membrane of an osteoblast.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boyan, B.D., Schwartz, Z., Swain, L.D. and Khare, A., Anat Rec, 224, 211219 (1989).CrossRefGoogle Scholar
2. Eanes, E.D., Anat Rec, 224, 220225 (1989).CrossRefGoogle Scholar
3. Ishihara, K., Iwasaki, Y. and Nakabayashi, N., Mat Sci Eng, C, 253259 (1998).CrossRefGoogle Scholar
4. Korematsu, A., Takemoto, Y., Nakaya, T. and Inoue, H., Biomaterials, 23, 263271 (2002).CrossRefGoogle Scholar
5. Lewis, A.L., Cumming, Z.L., Goreish, H.H., Kirkwood, L.C., Tolhurst, L.A. and Stratford, P.W., Biomaterials, 22, 99111 (2001).CrossRefGoogle Scholar
6. Smith, K.J. and Shelton, H., J. Cutan. Med. Surg., 6 (3), 241256 (2002).CrossRefGoogle Scholar
7. Ebel, T., Gerling, R., Otto, K.-H., “Werkstoffe für die Medizintechnik”, Werkstoffwoche '98 Band IV, ed. Planck, H. and Stallforth, H., (Wiley-VCH, 1999), 131136.Google Scholar
8. Semlitsch, M., Staub, F., Weber, H., Biomedizinische Technik 30 (12), 334339 (1985).CrossRefGoogle Scholar
9. Reimer, L., Image Formation in Low-Voltage Scanning Electron Microscopy, tutorial texts in optical engineering, (Springer, 1998), Vol. TT12, 120123.CrossRefGoogle Scholar
10. Kamusewitz, H. and Possart, W., Int. J. Adhesion and Adhesives 5 (4), 211215 (1985).CrossRefGoogle Scholar
11. Zanchetta, P. and Guezennec, J., Colloids and Surfaces B: Biointerfaces, 22, 301307 (2001).CrossRefGoogle Scholar