Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-30T23:00:14.206Z Has data issue: false hasContentIssue false

Imprinting the Quasi Bookshelf Texture of a Ferroelectric Liquid Crystal into Nano-scaled Polymer Fibrils

Published online by Cambridge University Press:  15 March 2011

S. H. Kim
Affiliation:
Chemical Physics Interdisciplinary Program and Liquid Crystal InstituteKent state University, Kent, Ohio 44242
S. Suresh
Affiliation:
Chemical Physics Interdisciplinary Program and Liquid Crystal InstituteKent state University, Kent, Ohio 44242
L.-C. Chien
Affiliation:
Chemical Physics Interdisciplinary Program and Liquid Crystal InstituteKent state University, Kent, Ohio 44242
Get access

Abstract

Polymer-stabilized ferroelectric liquid crystals (PSFLCs) are made by photopolymerizing 3% reactive mesogenic monomer on a quasi bookshelf texture of a ferroelectric liquid crystal (FLC). We observe the formation of nano-scaled polymer fibrils templated by the two dimensionally ordered host. The polymer fibrils capture the orientation of the host with thin polymer fibrils interweaving the smectic layers. The SEM study highlights the difference in morphology of the polymer fibrils depending on polymerization conditions; that is, polymerizing with or without the presence of an electric field. The polymer networks suppress the cone of rotation of FLC and thus, facilitate the switching and shorten the response time of the PSFLCs. We observed the threshold-less switching behavior in PSFLCs from samples polymerized with and without the field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, D. K., Chien, L.C. and Doane, J.W., Appl. Phys. Lett. 60, 3102 (1992).Google Scholar
2.(a) Chien, L.C., et al. in Liquid-Crystalline Polymer Systems: Technological Advances, ACS Symposium 632, Washington DC, 1996, chap.11.Google Scholar
(b) Yang, D.K., Chien, L.C. and Fung, Y.K., in Liquid Crystals in Complex Geometries, Crawford, G.P. and Zumer, S. Eds., Taylor and Francis, London, 1996, Chap.4.Google Scholar
3. Nose, T., Masuda, S., Sato, S., Li, J., Chien, L.C., Bos, P.J., Opt. Lett 22, 351 (1997).Google Scholar
4. Lee, S. N., Chien, L.C. and Sprunt, S., Appl. Phys. Lett. 72, 885 (1998).Google Scholar
5. Nourry, J., Sixou, P., Mitov, M., Glogarova, M., and Bubnov, A.M., Liq. Cryst. 27, 35 (2000).Google Scholar
6. Kang, S.W., Sprunt, S., and Chien, L.C., Adv. Mat. 13, 1179 (2001).Google Scholar
7. Hikmet, R.A.M., H.M. Boots, J., and Michielsen, M., Liq. Cryst. 19, 65 (1995).Google Scholar
8. Li, J., Wang, A., Cai, Y., and Huang, X., Ferroelectrics, 213, 91 (1998).Google Scholar
9. Furue, H., Limura, Y., Hasebe, H., Takatsu, H., and Kobayshi, S., Mol. Cryst. Liq. Cryst. 331, 399 (1999).Google Scholar
10. Dierking, I., Osipov, M.A., and Lagerwall, S.T., Eur. Phys. J. E 2, 303 (2000).Google Scholar
11.unpublished results.Google Scholar