Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-30T21:13:47.808Z Has data issue: false hasContentIssue false

Improved Efficiency in Hydrogenated Amorphous Silicon Solar Cells Irradiated by Excimer Laser

Published online by Cambridge University Press:  01 February 2011

A. A. Damitha
Affiliation:
Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, United Kingdom.
T. Adikaari
Affiliation:
Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, United Kingdom.
S. Ravi
Affiliation:
Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, United Kingdom.
P. Silva
Affiliation:
Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, United Kingdom.
Michael J. Kearney
Affiliation:
Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, United Kingdom.
John M. Shannon
Affiliation:
Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, United Kingdom.
Get access

Abstract

Excimer laser crystallisation is used to fabricate nanocrystalline thin film silicon Schottky barrier solar cells, in a superstrate configuration with indium tin oxide as the front contact and chromium as the back contact. 150 nm thick intrinsic absorber layers are used for the solar cells, and was crystallised using an excimer laser with different laser energy densities. These layers were characterised using Raman spectroscopy and optical absorption before device fabrication. External quantum efficiencies of the devices were calculated from the spectral response data of the devices. A maximum efficiency of 70 % is observed for low energy irradiation, which is significant for very thin absorber layers. Device operation is discussed with proposed band structures for the devices and supplementary measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brotherton, S. D., McCulloch, D. J., Clegg, J. B. and Gowers, J. P., IEEE Trans. Electron Devices, 40, 407 (1993).Google Scholar
2. Brotherton, S. D., Semiconductor Science and Technology, 10, 721 (1995).Google Scholar
3. Brotherton, S. D., McCulloch, D. J., Gowers, J. P., Ayres, J. R. and Trainor, M. J., J. Appl. Phys. 82, 4086 (1997).Google Scholar
4. Mei, P., Boyce, J. B., Hack, M., Lujan, R. A., Johnson, R. I., Anderson, G. B., Fork, D. K. and Ready, S. E., Appl. Phys. Lett. 64, 1132 (1994).Google Scholar
5. Azuma, H., Takeuchi, A., Ito, T., Fukushima, H., Motohiro, T. and Yamaguchi, M. Solar Energy Materials & Solar Cells, 74, 289 (2002).Google Scholar
6. Yamamoto, K., Nakashima, A., Suzuki, T., Yoshimi, M., Nishio, H. and Izumina, M., Jpn. J. Appl. Phys. 33, L1751 (1994).Google Scholar
7. Yeh, Wen-Chang and Matsumura, M., Jpn. J. Appl. Phys., 38, L110 (1999).Google Scholar
8. Im, J.S., Kim, H. J. and Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993).Google Scholar
9. Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G. and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
10. Voustas, A. T., Applied surface science, 208–209, 250 (2003).Google Scholar
11. Smit, C., van Swaaij, R. A. C. M. M., Donker, H. and Petit, A. M. H. N., Kessels, W. M. M., and van de Sanden, M. C. M., J. Appl. Phys., 94, 3582 (2003).Google Scholar
12. Tsu, R., Gonzalez-Hernandez, J., Chao, S. S., Lee, S. C., and Tanaka, K., Appl. Phys. Lett. 40, 534 (1982).Google Scholar
13. Park, Y., Choong, V., Gao, Y., Hsieh, B. R., and Tang, C. W., Appl. Phys. Lett. 68, 2699 (1996).Google Scholar
14. Kanicki, Jerzi, Appl. Phys. Lett. 53, 1943 (1988).Google Scholar
15. Kim, H., Gilmore, C. M., Piqué, A., Horwitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., and Chrisey, D. B., J. Appl. Phys., 86, 6451 (1999).Google Scholar
16. Gutkowicz-Krusin, D., Wronski, C. R., and Tiedje, T., Appl. Phys. Lett. 38, 87 (1981).Google Scholar