No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Impurity redistribution in Bi-implanted Si and in As-implanted Si has been investigated after irradiation with 25 ps Nd(λ=l.06 μm) laser pulse in the energy range 0.1–1.5 J/cm2 . Channeling effect in combination with 2.0 MeV He+ backscattering in glancing detection has been used to characterize the epitaxial crystallization, the impurity location and its depth distribution. The amorphous to single crystal transition occurs at an energy density of about 0.4 J/cm 2 . Bi atoms are located after crystallization in substitutional lattice sites for the in depth part of the distribution. Part of the Bi atoms accumulated at the sample surface and the amount of segregation increases with the pulse energy density and depends on the substrate orientation. A computer model has been also developed to calculate several parameters of interest, as the melt threshold,the melt duration, the carrier temperature etc including a detailed description of the absorption and of the energy relaxation processes. The calculations indicate that the simple thermal description accounts quantitatively for the experimental data on melt duration and impurity segregation.