Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T10:07:10.795Z Has data issue: false hasContentIssue false

In Situ Actinide X-ray Absorption Spectroelectrochemistry

Published online by Cambridge University Press:  01 February 2011

Mark R. Antonio
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439–4831, U.S.A.
Ming-Hsi Chiang
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439–4831, U.S.A.
Clayton W. Williams
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439–4831, U.S.A.
L. Soderholm
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439–4831, U.S.A.
Get access

Abstract

By using electrochemical techniques in simultaneous combination with EXAFS, we can stabilize a targeted charge state of a solution complex and probe the coordination of selected actinide (An) ions. In addition, we can acquire sufficient XANES over a range of controlled electrochemical potentials, in the vicinity of a redox couple, to perform a Nernst analysis. The prospect of this technique to provide here-to-fore unattainable information is demonstrated through examples of Np, Pu, and Bk speciation in solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions (Cebelcor, Brussels, 1974).Google Scholar
2. Antonio, M. R., Soderholm, L., and Song, I., J. Appl. Electrochem. 27, 784 (1997).Google Scholar
3. Soderholm, L., Antonio, M. R., Williams, C., and Wasserman, S. R., Anal. Chem. 71, 4622 (1999).Google Scholar
4. Smith, D. A., Heeg, M. J., Heineman, W. R., and Elder, R. C., J. Am. Chem. Soc. 106, 3053 (1984).Google Scholar
5. Sharpe, L. R., Heineman, W. R., and Elder, R. C., Chem. Rev. 90, 705 (1990).Google Scholar
6. Igo, D. H., Elder, R. C., Heineman, W. R., and Dewald, H. D., Anal. Chem. 63, 2535 (1991).Google Scholar
7. Farley, N. R. S., Gurman, S. J., and Hillman, A. R., Electrochem. Commun. 1 (1999).Google Scholar
8. Bott, A. W., Current Separations 14, 64 (1995).Google Scholar
9. Beno, M. A., Engbretson, M., Jennings, G., Knapp, G. S., Linton, J., Kurtz, C., Rütt, U., and Montano, P. A., Nucl. Instrum. Methods Phys. Res. A 467–468, 699 (2001).Google Scholar
10. Ressler, T., J. Synchrotron Radiat. 5, 118 (1998).Google Scholar
11. Antonio, M. R., Soderholm, L., Williams, C. W., Blaudeau, J.-P., and Bursten, B. E., Radiochim. Acta 89, 17 (2001).Google Scholar
12. Antonio, M. R., Williams, C. W., and Soderholm, L., Radiochim. Acta 90, 851 (2002).Google Scholar
13. Rehr, J. J. and Albers, R. C., Rev. Mod. Phys. 72, 621 (2000).Google Scholar
14. Brett, C. M. A. and Brett, A. M. O., in Encyclopedia of Electrochemistry. Volume 3. Instrumentation and Electroanalytical Chemistry, edited by Unwin, P. R. (Wiley-VCH, Weinheim, 2003), p. 105.Google Scholar
15. Shilov, V. P., Radiochem., Engl. Transl. 40, 11 (1998).Google Scholar
16. Gelis, A. V., Vanysek, P., Jensen, M. P., and Nash, K. L., Radiochim. Acta 89, 565 (2001).Google Scholar
17. Williams, C. W., Blaudeau, J.-P., Sullivan, J. C., Antonio, M. R., Bursten, B. E., and Soderholm, L., J. Am. Chem. Soc. 123, 4346 (2001).Google Scholar
18. Bratsch, S. G., J. Phys. Chem. Ref. Data 18, 1 (1989).Google Scholar
19. Cohen, D. and Hindman, J. C., J. Am. Chem. Soc. 74, 4679 (1952).Google Scholar
20. Riglet, C., Robouch, P., and Vitorge, P., Radiochim. Acta 46, 85 (1989).Google Scholar
21. Li, Y., Kato, Y., and Yoshida, Z., Radiochim. Acta 60, 115 (1993).Google Scholar
22. Conradson, S. D., Al Mahamid, I., Clark, D. L., Hess, N. J., Hudson, E. A., Neu, M. P., Palmer, P. D., Runde, W. H., and Tait, C. D., Polyhedron 17, 599 (1998).Google Scholar
23. Stokely, J. R., Baybarz, R. D., and Peterson, J. R., J. Inorg. Nucl. Chem. 34, 392 (1972).Google Scholar
24. Simakin, G. A., Kosyakov, V. N., Baranov, A. A., Erin, E. A., Kopytov, V. V., and Timofeev, G. A., Soviet Radiochem., Engl. Transl. 19, 302 (1977).Google Scholar
25. Shannon, R. D., Acta Cryst. A32, 751 (1976).Google Scholar
26. Peterson, J. R. and Cunningham, B. B., Inorg. Nucl. Chem. Lett. 3, 327 (1967).Google Scholar
27. Kimura, T., Choppin, G. R., Kato, Y., and Yoshida, Z., Radiochim. Acta 72, 61 (1996).Google Scholar
28. Revel, R., Den Auwer, C., Madic, C., David, F., Fourest, B., Hubert, S., Le Du, J.-F., and Morss, L. R., Inorg. Chem. 38, 4139 (1999).Google Scholar
29. Latrous, H. and Oliver, J., J. Mol. Liq. 81, 115 (1999).Google Scholar
30. David, F. H. and Fourest, B., New J. Chem. 21, 167 (1997).Google Scholar
31. Cossy, C., Helm, L., Powell, D. H., and Merbach, A. E., New J. Chem. 19, 27 (1995).Google Scholar
32. Chiang, M.-H., Williams, C. W., Soderholm, L., and Antonio, M. R., Eur. J. Inorg. Chem., 2663 (2003).Google Scholar
33. Chiang, M.-H., Soderholm, L., and Antonio, M. R., Eur. J. Inorg. Chem., 2929 (2003).Google Scholar
34. Saprykin, A. S., Spitsyn, V. I., and Krot, N. N., Doklady Phys. Chem., Engl. Transl. 228, 500 (1976).Google Scholar
35. Bockris, J. O. M. and Reddy, A. K. N., Modern Electrochemistry (Plenum, New York, 1970).Google Scholar
36. Fulde, P., Electron Correlations in Molecules and Solids (Springer, Berlin, Germany, 1995).Google Scholar
37. Soderholm, L., Antonio, M. R., Skanthakumar, S., and Williams, C. W., J. Am. Chem. Soc. 124, 7290 (2002).Google Scholar