Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:14:06.570Z Has data issue: false hasContentIssue false

In Situ Diagnostics of Methane/Hydrogen Plasma Interactions with Si(100)

Published online by Cambridge University Press:  10 February 2011

H. L. Duan
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305
Stacey F. Bent
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

Methane/hydrogen plasmas have been reported to be sources both for a-C:H film deposition and for compound semiconductor etching. In this work, an in situ diagnostic study of methane/hydrogen plasma interactions with a silicon surface is carried out, focusing on the effect of hydrogen dilution. A remote electron cyclotron resonance (ECR) plasma using a H2/Ar mixture excites methane gas near a Si(l 00) substrate. In situ multiple internal reflection Fourier transform infrared (MIR-FTIR) spectroscopy is used to probe the surface species at different hydrogen dilution ratios. We find that at low methane pressure without hydrogen dilution, a-C:H films are deposited. With H2 dilution, the results suggests that some sputter/etching of the silicon surface occurs. Hence, methyl groups are identified as potential etchants for silicon materials. The data suggest that there is a competition between etching and deposition chemistry which depends strongly upon the methane pressure and hydrogen ratio in the plasma.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 National Research Council, Plasma Processing of Materials: Scientific Opportunities and Technological Challenges (National Academy Press, Wash. D.C., 1991).Google Scholar
2 National Research Council, Database Needs for Modeling and Simulation of Plasma Processing (National Academy Press, Wash. D.C., 1996).Google Scholar
3 For a review of some optical techniques generally applicable to surface studies and specific to the plasma environment, see Oehrlein, Surf Sci. 386, 222 (1997).10.1016/S0039-6028(97)00304-XGoogle Scholar
4 Aydil, E. S., Gottscho, R. A., and Chabal, Y. J., Pure & Appl. Chem. 66, 1381 (1994).10.1351/pac199466061381Google Scholar
5 Aydil, E. S. and Gottscho, R. A., Solid State Technology October, 181 (1997).Google Scholar
6 Lee, M.-S. and Bent, S. F. in Temperature-Dependent Studies ofa-SiC: H Growth by Remote Plasma CVD Using Methylsilanes, edited by Kumta, P. N., Hepp, A. F., Beach, D. B., Arkles, B. and Sullivan, J. J. (Mater. Res. Soc. Proc. 495, Pittsburgh, PA 1997) pp. 153158.Google Scholar
7 Shim, J. Y., Chi, E. J., Baik, H. K., and Lee, S. M., Jap. J. Appl. Phys. 37,440 (1998).10.1143/JJAP.37.440Google Scholar
8 McCauley, T. G., Gruen, D. M., and Krauss, A. R., Appl. Phys. Lett. 73, 1646 (1998).10.1063/1.122233Google Scholar
9 Heitz, T., Drevillon, B., Bouree, J. E., and Godet, C., Appl. Phys. Lett. 72, 780 (1998).10.1063/1.120891Google Scholar
10 Thomas, L., Jauberteau, I., Jauberteau, J. L., Cinelli, M. J., Aubreton, J., and Catherinot, A., Appl. Phys. Lett. 68, 1634 (1996).10.1063/1.115675Google Scholar
11 Jia, C. L., Urban, K., and Jiang, X., Phys. Rev. B 52, 5164 (1995).10.1103/PhysRevB.52.5164Google Scholar
12 Arnault, J. C., Hubert, S., and Normand, F. L., J. Phys. Chem. B 102,48564864 (1998).10.1021/jp9809742Google Scholar
13 Lee, J. W., Pathangey, B., Davidson, M. R., Holloway, P. H., Lambers, E. S., Davydov, A., Anderson, T. J., and Pearton, S. J., J. Vac. Sci. Technol. A 16, 1944 (1998).10.1116/1.581201Google Scholar
14 Hayes, T. R., Dreisbach, M. A., Thomas, P. M, Dautremont-Smith, W. C., and Heimbrook, L. A., J Vac. Sci. Technol. B 7, 1130 (1989).10.1116/1.584564Google Scholar
15 Lee, M.-S. and Bent, S. F., J. Phys. Chem. B 1997, 91959205 (1997).10.1021/jp9718459Google Scholar
16 Kong, M. J., Lee, S. S., Lyubovitsky, J., and Bent, S. F., Chem. Phys. Lett. 263, 1 (1996).10.1016/S0009-2614(96)01186-4Google Scholar
17 We note that SiH stretching modes are typically -25 times more intense than CH stretches, as described in Ref. x.Google Scholar
18 Duan, H.-L. and Bent, S. F., unpublished data.Google Scholar
19 Chiang, C.-M. Gates, S. M., Lee, S. S., Kong, M. J., and Bent, S. F., J. Phys. Chem. 101, 9537 (1997).10.1021/jp963717aGoogle Scholar
20 Lee, S. S., Kong, M. J., Bent, S. F.,Chiang, C.-M. and Gates, S. M., J. Phys. Chem. 100, 2001520020 (1996).10.1021/jp961928+Google Scholar