Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T03:02:18.214Z Has data issue: false hasContentIssue false

In situ Imaging at the NIST Neutron Imaging Facility

Published online by Cambridge University Press:  20 June 2011

David L. Jacobson
Affiliation:
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8461, U.S.A.
Daniel S. Hussey
Affiliation:
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8461, U.S.A.
Eli Baltic
Affiliation:
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8461, U.S.A.
Get access

Abstract

Neutron imaging as a method to perform in situ studies of hydrogen fuel cells, hydrogen storage devices, heat pipes, and batteries has made tremendous progress in recent years. Neutrons are useful to study light elements mixed with heavy Z elements where penetration by other forms of radiation is either impossible or incapable of contrasting the light elements. Useful spatial resolution available at neutron imaging facilities is now approaching 10 micrometers. Complimentary time resolution of 30 fps or greater is also possible with a spatial resolution approaching 300 micrometers. Here we will provide an overview of the technique of neutron imaging and experimental studies with neutrons at the National Institute of Standards and Technology. Examples of in situ studies of fuel cells, hydrogen storage devices, heat pipes and batteries will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jacobson, D. L., Hussey, D. S., Baltic, E., LaRock, J., Arif, M., Gagliardo, J., Owejan, J. P., Trabold, T. A. in Neutron radiography, proceedings of the 8th world conference on neutron radiography, edited by Arif M, M., Downing, R.G., (DES Tech Publications, Lancaster, PA, 2008) pp. 5057.Google Scholar
2. Hussey, D. S., Jacobson, D. L., Arif, M., Huffman, P. R., Williams, R. E., Cook, J. C., Nucl. Instr. Meth. A542, 915 (2005).Google Scholar
3. Siegmund, O. H. W., Vallerga, J. V., Martin, A., Feller, B., Arif, M., Hussey, D. S., Jacobson, D. L., Nucl. Instr. Meth. A579, 188191 (2007).Google Scholar
4. Tremsin, A. S., Vallerga, J. V., McPhate, J. B., Siegmund, O. H. W., Feller, W. B., Crow, L., Cooper, R. G., Nucl. Instr. Meth. A592, 374384 (2008).Google Scholar
5. Bellows, R. J., Lin, M. Y., Arif, M., Thompson, A. K., Jacobson, D., J. Electrochem. Soc. 146, 10991103 (1999).Google Scholar
6. Satija, R., Jacobson, D. L., Arif, M., Werner, S. A., J. Power Sources 129, 238245 (2004).Google Scholar
7. Schneider, I. A., Kramer, D., Wokaun, A., Scherer, G. G., Electrochem. Commun. 7, 13931397 (2005).Google Scholar
8. Trabold, T. A., Owejan, J. P., Gagliardo, J. J., Jacobson, D. L., Hussey, D. S., Arif, M. in Handbook of fuel cells: advances in electrocatalysis, materials, diagnostics and durability edited by Vielstich, W., Gasteiger, H.A., Yokokawa, H., (Handbook of fuel cells 5 & 6, John Wiley & Sons Ltd., Chichester, UK, 2009) pp. 658672.Google Scholar
9. Hussey, D. S., Jacobson, D. L., Arif, M., Owejan, J. P., Gagliardo, J. J., Trabold, T. A., J. Power Sources 172, 225228 (2007).Google Scholar
10. Boillat, P., Kramer, D., Seyfang, B. C., Frei, G., Lehmann, E., Scherer, G. G., Wokaun, A., Ichikawa, Y., Tasaki, Y., Shinohara, K., Electrochem. Commun. 10, 546550 (2008).Google Scholar
11. Hickner, M. A., Siegel, N. P., Chen, K. S., Hussey, D. S., Jacobson, D. L., Arif, M., J. Electrochem. Soc. 155(3), B294B302 (2008).Google Scholar
12. Turhan, A., Heller, K., Brenizer, J. S., Mench, M. M., J. Power Sources 180, 773783 (2008).Google Scholar
13. Owejan, J. P., Trabold, T. A., Jacobson, D. L., Arif, M., Kandlikar, S. G., Int. J. Hydrogen Energy 32, 44894502 (2007).Google Scholar
14. Hickner, M. A., Siegel, N. P., Chen, K. S., Hussey, D. S., Jacobson, D. L., Arif, M., J. Electrochem. Soc. 155, B427B434 (2008).Google Scholar
15. Kim, S., Mench, M. M., J. Electrochem. Soc. 156, B353 (2009).Google Scholar
16. Spernjak, D., Advani, S. G., and Prasad, A. K., J. Electrochem. Soc. 156, B109B117 (2009).Google Scholar
17. Kamata, M., Esaka, T., Takami, K., Takai, S., Fujine, S., Yoneda, K., Kanda, K., Solid State Ionics 91, 303306 (1996).Google Scholar
18. Lanz, M., Lehmann, E., Imhof, R., Exnar, I., Novak, P., J. Power Sources 101, 177181 (2001).Google Scholar
19. Kardjilov, N., Hilger, A., Manke, I., Strobla, M., Treimer, W., Banhart, J., Nucl. Instr. Meth. A542, 1621, (2005).Google Scholar
20. Riley, G. V., Hussey, D. S., Jacobson, D. L., ECS Trans. 25, 75 (2010).Google Scholar
21. Jacobson, D. L., Hussey, D. S., Baltic, E., Udovic, T. J., Rush, J. J., Bowman, R. C. Jr., Int. J. Hydrogen Energy 35, 1283712845 (2010).Google Scholar
22. Wilson, C., Borgmeyer, B., Winholtz, R. A., Ma, H. B., Jacobson, D. L., Hussey, D. S., Arif, M., J. Thermophys. Heat Transf. 22, 366372 (2008).Google Scholar