Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T02:11:33.918Z Has data issue: false hasContentIssue false

In Situ Polypeptide Directed Silica Biomineralization

Published online by Cambridge University Press:  17 March 2011

Diana D. Glawe
Affiliation:
Department of Engineering Science, Trinity University, San Antonio, TX, USA
Francisco RodrÍguez
Affiliation:
Materials Directorate, Air Force Research Laboratories, Wright-Patterson AFB, OH, USA
Morley O. Stone
Affiliation:
Materials Directorate, Air Force Research Laboratories, Wright-Patterson AFB, OH, USA
Rajesh R. Naik
Affiliation:
Materials Directorate, Air Force Research Laboratories, Wright-Patterson AFB, OH, USA
Get access

Abstract

Silica-precipitating polypeptides were deposited onto an indium tin oxide (ITO) surface from bulk solution with and without the assistance of an externally applied electrostatic field. Exposure of the peptide-coated surface to an alkoxide precursor produced biosilica structures that were securely attached to the electrode surface. The silica morphologies resulting from the test cases using an externally applied electrostatic field during peptide deposition were distinct from the morphologies resulting from cases without an applied field. The silica morphologies observed on the ITO surface were different from the usual silica morphology resulting from static conditions. Peptide size was also shown to influence resulting biosilica morphology. The experimental results presented herein demonstrate the feasibility of creating biosilica nanostructures with controlled morphologies using polypeptides in vitro.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Round, F. E., Crawford, R. M., and Mann, D. G., The Diatoms: Biology & Morphology of the Genera (Cambridge University Press, Cambridge, 1990).Google Scholar
2. Perry, C. and Keeling-Tucker, T., J. Biol. Inorg. Chem. 5, 537550 (2000).CrossRefGoogle Scholar
3. Kröger, N., Deutzmann, R., and Sumper, M., Science 286, 11291132 (1999).CrossRefGoogle Scholar
4. Cha, J., Shimizu, K., Zhou, Y., Christiansen, S., Chmelka, B.F., Stucky, G.D., and Morse, D.E., Proc. Natl. Acad. Sci. USA 96, 361365 (1999).CrossRefGoogle Scholar
5. Coradin, T., Olivier, D., and Livage, J., Langmuir 18, 23312336 (2002).CrossRefGoogle Scholar
6. Rodríguez, F., Glawe, D., Naik, R., Hallinan, K., and Stone, M., Biomacromolecules 5, 261265 (2004).CrossRefGoogle Scholar
7. Naik, R., Whitlock, P., Rodríguez, F., Brott, L., Glawe, D., Clarson, S. and Stone, M., Chem. Commun. 2, 238239 (2003).CrossRefGoogle Scholar
8. Pohl, H.A., Dielectrophoresis (Cambridge University Press, Cambridge, 1978).Google Scholar
9. Grigsby, J., Blanch, H., and Prausnitz, J., Biophys. Chem. 99, 107116 (2002).CrossRefGoogle Scholar
10. Glawe, D., Rodríguez, F., Stone, M., Naik, R., J. or Matls. Chem., submitted for review for publication in 2004.Google Scholar
11. Fang, A., Ng, H.T., Su, X., and Li, S.F.Y., Langmuir 16, 52215226 (2000).CrossRefGoogle Scholar
12. Fang, A., Ng, H.T., and Li, S.F.Y., Langmuir 17, 43604366 (2001).CrossRefGoogle Scholar