Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T01:05:07.155Z Has data issue: false hasContentIssue false

In Situ Spectroscopic Ellipsometry Studies of The Interaction Process of Ethene With Si Surfaces During Sic Formation

Published online by Cambridge University Press:  10 February 2011

T. Wöhner
Affiliation:
TU Ilmenau, Institut für Festkörperelektronik, PF 100565, D-98684 Ilmenau, Germany TU Ilmenau, Institut für Physik, PF 100565, D-98684 Ilmenau, Germanythomas.woehner@e-technik.tu-ilmenau.de
Th. Stauden
Affiliation:
TU Ilmenau, Institut für Festkörperelektronik, PF 100565, D-98684 Ilmenau, Germany
V. Cimalla
Affiliation:
TU Ilmenau, Institut für Festkörperelektronik, PF 100565, D-98684 Ilmenau, Germany
G. Eichhorn
Affiliation:
TU Ilmenau, Institut für Festkörperelektronik, PF 100565, D-98684 Ilmenau, Germany
J.A. Schaefer
Affiliation:
TU Ilmenau, Institut für Physik, PF 100565, D-98684 Ilmenau, Germany
J. Pezoldt
Affiliation:
TU Ilmenau, Institut für Festkörperelektronik, PF 100565, D-98684 Ilmenau, Germany
Get access

Abstract

The interaction of ethene with silicon (111) surfaces at different process temperatures (580°C, 680°C, 780°C) was monitored in situ by spectroscopic ellipsometry. It is shown that spectroscopic ellipsometry is a reliable method to monitor the carbonization process of silicon surfaces. Different SiC formation stages (incubation time, (√3×√3)R30° reconstruction, 2D growth and 3D growth) were observed using complimentary analyzing techniques. The change of the ellipsometric signal as a function of process time is related to these stages and was interpreted using an optical model which consists of four layers (surface roughness, SiC layer, interface layer, Si substrate).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pickering, C., Hope, D.A.O., Carline, R.T., Robbins, D.J., J. Vac. Sci. Technol. A13 (1995), 740744.10.1116/1.579818Google Scholar
2 Duncan, W.M., Bevan, M.J., Shih, H.D., J. Vac. Sci. Technol. A15 (1997), 216222.10.1116/1.580515Google Scholar
3 Taniyasu, Y., Ito, R., Shimoyama, N., Kurihara, M., Jia, A., Kato, Y., Kobayashi, M., Yoshikawa, A., Takahashi, K., J. Cryst. Growth 189/190 (1998), 305309.10.1016/S0022-0248(98)00271-1Google Scholar
4 Ramm, J., Beck, E., Zueger, A., Mater. Res. Soc. Symp. Proc. 220 (1991), 15.10.1557/PROC-220-15Google Scholar
5 Ramm, J., Beck, E., Zueger, A., Domman, A., Pixley, R.E., Thin Solid Films 228 (1993), 23.10.1016/0040-6090(93)90555-4Google Scholar
6 Azzam, R.M.A., Bashara, N.M., Ellipsometry and Polarized Light (North Holland, New York, 1977).Google Scholar
7 Miki, K. et al. , Surf. Sci 406 (1998), 312327.10.1016/S0039-6028(98)00131-9Google Scholar
8 Chiarig, J.M. et al. , Surf. Sci. 15 (1969), 277.10.1016/0039-6028(69)90151-4Google Scholar
9 Li, J.P., Steckl, A.J., J. Electrochem. Soc., Vol. 142, No. 2, Febr. 1995, 634640.10.1149/1.2044113Google Scholar
10 Kusunoki, J., Takagaki, T., Ishidzuka, S., Igari, Y., Takaoka, T., Surf. Sci. 380 (1997), 131144.10.1016/S0039-6028(97)00007-1Google Scholar
11 Attenberger, W., Linder, J.K.N., Cimalla, V., Pezoldt, J., Mater. Sci. Eng. B56 (1999) in press.Google Scholar
12 Shek, M.L., Surf. Sci. 414 (1998), 353362.10.1016/S0039-6028(98)00437-3Google Scholar
13 Ikeda, M., Maruoka, T., Nagashima, N., Surf. Sci. 416 (1998), 240244.10.1016/S0039-6028(98)00587-1Google Scholar