Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T01:12:59.176Z Has data issue: false hasContentIssue false

In Situ Stress and Strain Measurements During the Growth of Cu/Ni (001) Multilayers

Published online by Cambridge University Press:  14 March 2011

T. Bigault
Affiliation:
TECSEN, CNRS, Univ Aix-Marseille III, 13397 Marseille Cedex 20, France
F. Bocquet
Affiliation:
TECSEN, CNRS, Univ Aix-Marseille III, 13397 Marseille Cedex 20, France
S. Labat
Affiliation:
TECSEN, CNRS, Univ Aix-Marseille III, 13397 Marseille Cedex 20, France
O. Thomas
Affiliation:
TECSEN, CNRS, Univ Aix-Marseille III, 13397 Marseille Cedex 20, France
A. Marty
Affiliation:
DRFMC/SP2M/NM, CEA Grenoble Cedex 9, 38054, France
B. Gilles
Affiliation:
LTPCM-ENSEEG, BP 75, 38402 St Martin d'Hères, France
Get access

Abstract

Cu/Ni (001) multilayers have been grown by molecular beam epitaxy at room temperature. In-situ electron diffraction and curvature measurements performed during the growth are presented. The average lattice parameter in the equiatomic multilayers evolves gradually towards the alloy lattice parameter. The in-plane lattice parameter of both Cu and Ni evolves continuously towards the bulk lattice parameter with no evidence of pseudomorphic growth. The combination of diffraction and curvature measurements suggests that the Ni on Cu interface is diffuse. This is attributed to the surfactant behaviour of Cu. This results shed new insights into the interesting magnetic properties of Ni films on Cu (001).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bochi, G., Ballentine, C. A., Inglefield, H.E., Thompson, C.V., O'Handley, R.C., Hug, H.J., Stiefel, B., Moser, A. and Güntherodt, H.J., Phys. Rev. B, 52, 7311 (1995).10.1103/PhysRevB.52.7311Google Scholar
[2] Sander, D., Rep. Prog. Phys. 62, 150 (1999).10.1088/0034-4885/62/5/204Google Scholar
[3] Okamoto, H. and Massalski, T.B., Phase Diagrams of Binary Alloys (American Society for Metals, Metals Park, Ohio, 1987).Google Scholar
[4] Tokei, Z., Beke, D., Bernardini, J., Rolland, A., Scripta Met. 39, 1127 (1998).10.1016/S1359-6462(98)00272-3Google Scholar
[5] Treglia, G., Legrand, B., Maugain, P., Surf. Sci. 225, 319 (1990).10.1016/0039-6028(90)90453-FGoogle Scholar
[6] Ramaswany, V., Clemens, B., and Nix, W. D., to appear in Mater. Res. Soc. Proc. (1998).Google Scholar
[7] Hope, S., Lee, J., Rosenbusch, P., Lauhoff, G., Bland, J.A.C., Ercole, A., Bucknall, D., Penfold, J., Lauter, H.L., Lauter, V. and Cubitt, R., Phys. Rev. B 55, 11422 (1997).10.1103/PhysRevB.55.11422Google Scholar
[8] Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., J. Appl. Phys. 87, 1172 (2000).10.1063/1.371995Google Scholar
[9] Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., Appl. Phys. Lett. 75, 914 (1999).10.1063/1.124552Google Scholar
[10] Matthews, J. and Blakeslee, A., J. Cryst. Growth 37, 118 (1974).Google Scholar
[11] Streitz, F., Cammarata, R., Sieradzki, K., Phys. Rev. B 49, 10699 and 10707 (1994).Google Scholar