Published online by Cambridge University Press: 28 January 2011
The conventional dye sensitized solar cell (DSSC) is limited by the use of a liquid electrolyte that is prone to leakage and evaporation. Efforts to replace the liquid with a solid equivalent have been met with difficulties in penetrating the mesoporous TiO2 nanostructured photoanode with liquid processing, particularly for photoanode layer thickness greater than 2 μm. Here, initiated chemical vapor deposition (iCVD) is successfully applied to directly synthesize and fill the pores of the mesoporous TiO2 network of up to 12 μm thickness with poly(2-hydroxyethyl methacrylate) (PHEMA) polymer electrolyte. Comparing with equivalent liquid electrolyte cells, DSSCs integrated with PHEMA polymer electrolyte showed consistently higher open circuit voltage, which is attributed to a decrease in electron recombination with the redox couple at the electrode-electrolyte interface.