Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T13:11:52.815Z Has data issue: false hasContentIssue false

Incompatibility of Martensite Variant Clusters in Self-accommodation Microstructure in Ti-Ni-Pd High Temperature Shape Memory Alloy

Published online by Cambridge University Press:  16 February 2015

Takeshi Teramoto
Affiliation:
Graduate student, Tokyo Institute of Technology, 4259 Nagatsutacho Midori-ku Yokohama 226-8503, Japan
Masaki Tahara
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology4259 Nagatsutacho Midori-ku Yokohama 226-8503Japan
Hideki Hosoda
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology4259 Nagatsutacho Midori-ku Yokohama 226-8503Japan
Tomonari Inamura
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology4259 Nagatsutacho Midori-ku Yokohama 226-8503Japan
Get access

Abstract

The formation frequency of habit plane variant (HPV) clusters in Ni-25Pd-50Ti shape memory alloy was analyzed using electron backscattering diffraction (EBSD) on the basis of the geometrically nonlinear theory of martensite. Two types of cluster, diamond and wedge, were most commonly observed. The ratio of the formation frequency of the diamond to wedge clusters was approximately 1 : 3, whereas the rotation to keep the kinematic compatibility (KC) condition, θ *, was 3.9° and 0.0032°, respectively. The ratio of the formation frequency is quantified by the value of θ * which is an indicator of the incompatibility of the cluster. The origin of the diamond cluster is discussed based on the degree of incompatibility.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lo, Y.C. and Wu, S.K., Scrita Metall. 27, 1097 (1992)Google Scholar
Ramaiah, K.V., Saikrishna, C.N., Gouthama, and Bhaumik, S.K., J. Alloys Compd. 554, 319 (2013)CrossRefGoogle Scholar
Song, Y., Chen, X., Dabade, V., Shield, T.W. and James, R.D., Nature 502, 85 (2013)CrossRefGoogle Scholar
Otuska, K. and Wayman, C.M., Shape Memory Materials, Cambridge University Press, Cambridge, (1998)Google Scholar
Bowles, J. S. and Mackenzie, J. K., Acta Metall. 2, 129 (1954)CrossRefGoogle Scholar
Mackenzie, J. K. and Bowles, J. S., Acta Metall. 2, 138 (1954)CrossRefGoogle Scholar
Wechsler, M. S., Lieberman, D. S. and Read, T. A., Trans. AIME. 197, 1503 (1953)Google Scholar
Saburi, T., Watanabe, Y. and Nenno, S., ISIJ International 29, 405 (1989)CrossRefGoogle Scholar
Inamura, T., Hosoda, H. and Miyazaki, S., Philos. Mag. 93, 618 (2013)CrossRefGoogle Scholar
Tan, S. and Xu, H., Continnuum Mech. Thermodyn. 2, 241 (1990)CrossRefGoogle Scholar
Schroeder, T.A. and Wayman, C.M., Acta Metall. 25, 1375 (1977)CrossRefGoogle Scholar
Takezawa, K., Shindo, T. and Sato, S., Scripta Metall. 10, 13 (1976)CrossRefGoogle Scholar
Saburi, T. and Wayman, C.M., Acta Metall. 27, 979 (1979)CrossRefGoogle Scholar
Nishida, M., Nishiura, T., Kawano, H. and Inamura, T., Philos. Mag. 92, 2215 (2012)CrossRefGoogle Scholar
Nishida, M., Okunishi, E., Nishiura, T., Kawano, H., Inamura, T., Ii, S. and Hara, T., Philos. Mag. 92, 2234 (2012)CrossRefGoogle Scholar
Inamura, T., Nishiura, T., Kawano, H., Hosoda, H. and Nishida, M., Philos. Mag. 92, 2247 (2012)CrossRefGoogle Scholar
Ball, J.M. and James, R.D., Arch. Rat. Mech. Anal. 100, 13 (1987)CrossRefGoogle Scholar
Bhattacharya, K., Microstructure of Martensite, Oxford University Press, Oxford, (2003)Google Scholar
Blandraud, X., Delpueyo, D., Grediac, M. and Zanzotto, G., Acta Mater. 58, 4559 (2012)CrossRefGoogle Scholar
Ball, J.M. and Schryvers, D., J. Phys. IV 112, 159 (2003)Google Scholar
Boullay, P.H., Schryvers, D. and Ball, J.M., Acta Mater. 51, 1421 (2003)CrossRefGoogle Scholar
Nishida, M., Hara, T., Morizono, Y., Ikeya, A., Kijima, H. and Chiba, A., Acta Mater. 45, 4847 (1997)CrossRefGoogle Scholar
Inamura, T. and Hosoda, H., Mater. Trans. A, 42A, 111 (2011)CrossRefGoogle Scholar
Delville, R., Kasinathan, S., Zhang, Z., Humbeeck, J.V., James, R.D. and Schrvers, D., Philos. Mag. 90, 177 (2010)CrossRefGoogle Scholar
Shi, H., Delville, R., Srivastrava, V., James, R.D.. and Schryvers, D., J. Alloys Compd. 582, 703 (2014)CrossRefGoogle Scholar
Nishida, M., Matsuda, M., Yasumoto, Y., Yano, S., Yamabe-Mitarai, Y. and Hara, T., Mater. Sci. and Tech. 24, 884 (2008)CrossRefGoogle Scholar
Teramoto, T., Tahara, M., Hosoda, H. and Inamura, T., Materials Today Proceedings, submitted Google Scholar
Huang, W. and Mura, T., J. Appl. Phys. 41, 5175 (1970)CrossRefGoogle Scholar