Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:08:44.509Z Has data issue: false hasContentIssue false

Inducing Grain Alignment in Metals, Compounds and Multicomponent Thin Films

Published online by Cambridge University Press:  01 February 2011

James M.E. Harper*
Affiliation:
james.harper@unh.edu, United States
Get access

Abstract

Several methods to induce grain alignment in polycrystalline thin films are discussed, in which directional effects can dominate over the normal evolution of fiber texture during thin film growth. Early experiments with ion beam assisted deposition showed the importance of channeling directions in selecting grain orientations with low sputtering yield or low ion damage energy density. Examples of this approach include the formation of biaxial fiber textures in Nb, Al and AlN. Grain orientations may also be selected by the release of stored energy during abnormal grain growth initiated by solute precipitation (Cu-Co) or phase transformation (TiSi2). Other energy sources such as mechanical deformation, crystallization or compound formation may also contribute to producing desired grain alignments. In multicomponent thin films, combinations of these mechanisms provide opportunities for more specific control of grain orientations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harper, J.M.E. and Gambino, R.J., J. Vac. Sci. Technol. Vol. 16, 1901 (1979).Google Scholar
2. Private Communication - letter of 8/16/95 from Harper to R.H. Hammond summarizing all IBAD experiments on biaxial texture at IBM 19781985.Google Scholar
3. Cuomo, J.J., Harper, J.M.E., Guarnieri, C.R., Yee, D.S., Attanasio, L.J., Angilello, J., Wu, C.T. and Hammond, R.H., J. Vac. Sci. Technol. Vol. 20, 349 (1982).Google Scholar
4. Yu, L.S., Harper, J.M.E., Cuomo, J.J. and Smith, D.A., Appl. Phys. Lett. 47, 932 (1985).Google Scholar
5. Cuomo, J.J., Guarnieri, C.R., Hammond, R.H., Harper, J.M.E., Herd, S., Yu, D.S., IBM Invention Disclosure 2/11/80, IBM Tech.Discl. Bull. 25, 3331 (1982).Google Scholar
6. Cuomo, J.J., Harper, J.M.E., Kaufman, H.R., U.S. Patent No. 4446403 (1 May 1984);Google Scholar
Kaufman, H.R., Cuomo, J.J. and Harper, J.M.E., J. Vac. Sci. Technol. Vol. 21, 725 (1982).Google Scholar
7. “The Effect of Low Energy Ion Bombardment on the Crystallographic Orientation of Thin Films”, Lock See Yu, M.S.Thesis, Massachusetts Institute of Technology, September 1985.Google Scholar
8. Harper, J.M.E., Smith, D.A., Yu, L.S. and Cuomo, J.J., Proc.MRS 51, 343 (1986).Google Scholar
9. Cuomo, J.J., Harper, J.M.E. and Yu, L.S., IBM Tech.Discl. Bull. 29, 4492 (1987).Google Scholar
10. Bradley, R.M., Harper, J.M.E. and Smith, D.A., J. Appl. Phys. 60, 4160 (1986).Google Scholar
11. Dong, L., Srolovitz, D.J., Was, G.S., Zhao, Q. and Rollett, A.D., J.Mater. Res. 16, 210 (2001).Google Scholar
12. Iijima, Y., Tanabe, N., Kohno, O. and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).Google Scholar
13. Arendt, P.N., Foltyn, S.R., Groves, J.R., DePaula, R.F., Dowden, P.C., Roper, J.M. and Coulter, J.Y., Appl.Supercond. 4, 429 (1998).Google Scholar
14. Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H. and Hammond, R.H., Appl. Phys. Lett. 71, 2955 (1997).Google Scholar
15. Mahieu, S., Ghekiere, P., Depla, D. and De Gryse, R., Thin Solid Films 515, 1229 (2006).Google Scholar
16. Deniz, D., Harper, J.M.E., Hoehn, J.W. and Chen, F., J. Vac. Sci. Technol. A25, 1214 (2007).Google Scholar
17. Deniz, D., Karabacak, T. and Harper, J.M.E., J. Appl. Phys. 103, 83553 (2008).Google Scholar
18. Karpenko, O., Bilello, J.C. and Yalisove, S.M., J. Appl. Phys. 76, 4610 (1994).Google Scholar
19. Harper, J.M.E, Cuomo, J.J. and Hentzell, H.T.G., J. Appl. Phys. 58, 550 (1985).Google Scholar
20. Johansson, B.O., Hentzell, H.T.G., Harper, J.M.E. and Cuomo, J.J., J.Mat. Res. 1, 442 (1986).Google Scholar
21. Rodriguez-Navarro, A., Otano-Rivera, W., Garcia-Ruiz, J. M., Messier, R. and Pilione, L. J., J.Mat. Res. 12, 1689 (1997).Google Scholar
22. Harper, J.M.E., Rodbell, K.P., Colgan, E.G. and Hammond, R.H., J. Appl. Phys. 82, 4319 (1997).Google Scholar
23. Was, G.S., Jones, J.W., Kalnas, C.E., Parfitt, L.J., Mashayekhi, A. and Hoffman, D.W., Nucl. Instr. and Methods in Physics B80/81 1356 (1993).Google Scholar
24. Dellas, N.S. and Harper, J.M.E., Thin Solid Films 515, 1646 (2006).Google Scholar
25. Harper, J.M.E., Gupta, J., Smith, D.A., Chang, J.W., Holloway, K.L., Cabral, C. Jr., Tracy, D.P. and Knorr, D.B., Appl. Phys. Lett. 65, 177 (1994).Google Scholar
26. Recrystallization of Metallic Materials, F. Haessner, ed. (Dr. Riederer Verlag GmbH, Stuttgart, 1978), p. 140.Google Scholar
27. Gupta, J., Harper, J.M.E., Mauer, J.L. IV, Blauner, P.G. and Smith, D.A., Appl. Phys. Lett. 61, 663 (1992).Google Scholar
28. Harper, J.M.E. and Rodbell, K.P., J. Vac. Sci. Technol. B15, 763 (1997).Google Scholar
29. Harper, J.M.E., Cabral, C. Jr. and Lavoie, C., Ann. Rev. Mat.Sci. 30, 523 (2000).Google Scholar
30. Mann, R.W., Miles, G.L., Knotts, T.A., Rakowski, D.W., Clevenger, L.A., Harper, J.M.E., d'Heurle, F.M. and Cabral, C. Jr., Appl. Phys. Lett. 67, 3729 (1995).Google Scholar
31. Svilan, V., Rodbell, K.P., Clevenger, L.A., Cabral, C. Jr., Roy, R.A., Noyan, I.C., Lavoie, C., Jordan-Sweet, J. and Harper, J.M.E., J. Elec. Mat. 26, 1090 (1997).Google Scholar
32. Lücke, K. and Stüwe, H.P., in Recovery and Recrystallization of Metals, Himmel, L., ed. (Interscience, New York, 1963), p. 160.Google Scholar
33. Detavernier, C., Deduytsche, D., Van Meirhaeghe, R.L., De Baerdemaeker, J. and Dauwe, C., Appl. Phys. Lett. 82, 1863 (2003).Google Scholar
34. Kung, K.T-Y., Iverson, R.B. and Reif, R., Appl. Phys. Lett. 46, 683 (1985).Google Scholar