Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T02:14:08.650Z Has data issue: false hasContentIssue false

Influence of Ammoniating Temperatures on Microstructures, Morphologies and Optical Properties of GaN/Nb Nanostructures by RF Magnetron Sputtering Technique

Published online by Cambridge University Press:  18 May 2012

Feng Shi*
Affiliation:
College of Physics and Electronics, Shandong Normal University, Jinan, P.R.China, 250014
Chengshan Xue
Affiliation:
College of Physics and Electronics, Shandong Normal University, Jinan, P.R.China, 250014
*
*Corresponding author: Shi Feng, Tel & Fax: +86 531 86182521, Email:sf751106@sina.com.cn
Get access

Abstract

GaN nanowires and nanorods have been successfully synthesized on Si (111) substrates by magnetron sputtering through ammoniating Ga2O3/Nb thin films and the effects of ammoniation temperatures on growth of GaN nanowires and nanorods were analyzed in detail. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra were carried out to characterize microstructures, morphologies, and optical properties of GaN samples. The results demonstrate that sample after ammoniation at 950 °C is single crystal GaN with hexagonal wurtzite structure and high crystalline quality, having the size of 30 - 80 nm in diameter. After ammoniation at 1000 °C, GaN nanorods appear with smooth and clean surface and more than 100 nm in diameter. The optical properties of GaN nanowires grown at 950 °C and nanorods grown at 1000 °C are best with strong emission intensities.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yoo, J., Hong, Y.J., An, S.J., et al. . Appl.Phys.Lett.,89, 043124 (2006).CrossRefGoogle Scholar
Motayed, A., Davydov, A.V., Vaudin, M.D., et al. . J.Appl. Phys.,100, 024306 (2006).CrossRefGoogle Scholar
Han, W., Redlich, P., Ernst, F., et al. . Appl. Phys. Lett., 76, 652-654 (2000)CrossRefGoogle Scholar
Han, W., Li, Q and Zettl, A.. Appl. Phys. Lett., 80, 303305 (2002).CrossRefGoogle Scholar
Xu, B.S., Zhai, L.Y., Liang, J., et al. . J. Cryst. Growth., 291, 3439 (2006).CrossRefGoogle Scholar
Li, J. Y., Chen, X. L., Qiao, Z.Y., et al. . J. Cryst. Growth., 213, 408410 (2000).CrossRefGoogle Scholar
Li, B.L., Zhang, H.Z., Xue, C.S., et al. . J. Alloys Compd., 448, 368371 (2008).CrossRefGoogle Scholar
Zhang, H.Z., Li, B.L., Xue, C.S., et al. .Vaccum, 82, 12241228 (2008).CrossRefGoogle Scholar
Zhang, H.Z., Li, B.L., Xue, C.S., et al. . Microelectron.J., 39, 16291633 (2008).CrossRefGoogle Scholar
Li, B.L., Zhang, H.Z., Xue, C.S., et al. . Solid State Comm.,145, 520524 (2008).CrossRefGoogle Scholar
Li, B.L., Zhang, H.Z., Xue, C.S., et al. . Superlattice. Microst., 43, 262267(2008).CrossRefGoogle Scholar
Perlin, P., Jauberthie-Carillon, C., Itie, J.P., et al. . Phys.Rev., B 45, 8389(1992).CrossRefGoogle Scholar
Yang, Y.G., Ma, H.L., Xue, C.S., et al. . Appl. Surf. Sci., 193254–260(2002).Google Scholar
Li, D., Sumiys, M., Fuke, S.. J. Appl. Phys., 90, 42194223(2001).CrossRefGoogle Scholar
Elkashef, N., Srinivasa, R.S., Major, S., et al. . Thin Solid Films, 333,912(1998).CrossRefGoogle Scholar
Kingsley, C.R., Whitaker, T.J., Wee, A.T.S., et al. . Mater.Sci.Eng. B, 29,7882(1995).CrossRefGoogle Scholar
Sasaki, T., Matsuoka, T., J. App. Phys., 64, 45314535(1998).CrossRefGoogle Scholar
Ishikawa, H., Kobayashi, S., Koide, Y., et al. . J. Appl. Phys., 81, 13151322(1997).CrossRefGoogle Scholar
Veal, T. D., Mahboob, I., Piper, L.F.J., et al. . Appl. Phys. Lett., 85, 15501552(2004).CrossRefGoogle Scholar
King, S.W., Carlson, E.P., Therrien, R.J.. J. Appl. Phys., 86, 55845593(1999).CrossRefGoogle Scholar
Monemar, B.. Phys. Rev., B 10,676681 (1974).CrossRefGoogle Scholar
Amanullah, F.M., Pratap, K.J., Hari, V.B., Mater.Sci.Eng.B 52,9397(1998).CrossRefGoogle Scholar
Xue, C, Wu, Y, Zhuang, H, et al. . Physica E, 30,179181(2005).CrossRefGoogle Scholar
Monemar, B., Phys. Rev, B 10,676681(1974).CrossRefGoogle Scholar
Wang, S.Y., Sun, Z.C., Cao, W.T., et al. . J.Instru. Ana., 23,6568(2004).Google Scholar