Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T14:02:33.574Z Has data issue: false hasContentIssue false

The Influence of Bulk and Interface Gap States on the Performance of Amorphous Silicon Thin Film Transistors

Published online by Cambridge University Press:  26 February 2011

M. Bohm
Affiliation:
Chronar Corp., P.O. Box 177, Princeton, New Jersey 08542, USA
J. Houghton
Affiliation:
Chronar Corp., P.O. Box 177, Princeton, New Jersey 08542, USA
S. Salamon
Affiliation:
Chronar Corp., P.O. Box 177, Princeton, New Jersey 08542, USA
Get access

Abstract

Amorphous silicon thin film transistors with on/off ratios >108 and on currents >100 μA for supply voltages <30 V have been manufactured. The transistors are of the structure glass/Cr/SiNx/intrinsic a-Si/n+a-Si/Al. The field effect electron mobility is typically 0.24 cm2 /Vs. Evaluation of quasistatic CV measurements yields a gap state density of 3.2*1016 cm−3eV−1 at midgap. A one-dimensional model calculation describing the influence of bulk and interface gap states and various other material and geometry parameters on transistor performance is outlined. Calculated data include space charge density, spatial distribution of band bending, band bending vs gate source voltage, static capacitance, and channel conductance. A fit calculation for the experimental sub pinch-off transfer characteristic of a thin film transistor is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Spear, W.E. LeComber, P.G., J. Non-Cryst. Solids, vol.8–10, 727 (1972)Google Scholar
2. Madan, A., LeComber, P.G., Spear, W.E., J. Non-Cryst. Solids, vol.20, 239 (1976)Google Scholar
3. LeComber, P.G., Spear, W.E., Gaith, A., Electron. Lett., vol.15, 179 (1979)Google Scholar
4. Snell, A.J., Mackenzie, K.D., Spear, W.E., LeComber, P.G., Hughes, A.J., Appl. Phys. vol.24, 357 (1981)Google Scholar
5. thompson, M.J., Mat. Res. Soc. Symp. Proc., vol.70 613 (1986)Google Scholar
6. Thompson, M.J., J. Vac. Sci. Technol. B, vol.2; 82D (1984)Google Scholar
7. Pankove, J.I., in Pankove, J.I. (ed.) Semiconductors & Semimetals, vol.21, part D, Academic Press Inc., Orlando, 261 (1984)Google Scholar
8. LeComber, P.G., Spear, W.E., in Pankove, J.I. (ed ) Semiconductors & Semimetals, vol.21, part D, Academic Press Inc., Orlando, 89 (1984)Google Scholar
9. Kuhn, M., Solid-St. Electron., vol 13 873 (1970)Google Scholar
10. Mego, T.J. Rev. Sci. Instrum., vol.57, 2798 (1986)Google Scholar
11. Schropp, R.E.I., Snijder, J.. Verwey, J.F., Mat. Res. Soc. Symp. Proc., vol.70, 167 (1986)Google Scholar
12. Böhm, M., Salamon, S.., Kiss, Z., submitted for presentation at 12th Int. Conf. on Amorphous and Liquid Semiconductors, Prague (1987)Google Scholar