Published online by Cambridge University Press: 21 March 2011
Thin film solar cells of CuInS2/Zn(Se,O)/ZnO configuration have been studied as a function of the Zn(Se,O) buffer layer deposition parameters. Deposition of the buffer films was carried out by the chemical bath deposition (CBD) method, at different bath temperatures and compositions, and followed in situ with a quartz crystal microbalance. The CBD conditions were chosen to grow Zn(Se,O) buffer layers under different kinetic regimes but maintaining the same buffer thickness. The cells have been characterised with current-voltage and quantum efficiency measurements. Light soaking effects and medium term stability have been checked. It is found that Zn(Se,O) grown under predominant electroless kinetics gives rise to buffer films richer in oxygen, which allow for higher fill factors, higher efficiencies (around 10%) and stability of the cells. These cells show however lower open circuit potential. On the other hand, Zn(Se,O) buffers grown under chemical regime become richer in selenium, which gives rise to cells with higher open circuit potential, but lower fill factor, conversion efficiency and stability. Light soaking effects are also more important with the chemically grown buffers.