Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T10:51:42.916Z Has data issue: false hasContentIssue false

Influence of Coupling Agent on the Morphology of Multifunctional, Degradable Shape-Memory Polymers

Published online by Cambridge University Press:  15 July 2013

Liang Fang
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.
Wan Yan
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.
Ulrich Nöchel
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.
Michael Zierke
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.
Marc Behl
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.
Karl Kratz
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.
Andreas Lendlein
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.
Get access

Abstract

Multifunctional polymer-based biomaterials, which combine degradability and shapememory capability, are promising candidate materials for biomedical implants. An example is a degradable multiblock copolymer (PDC), composed of poly(p-dioxanone) (PPDO) as hard and poly(ε-caprolactone) (PCL) as switching segments. PDC exhibits a unique linear mass loss during hydrolytic degradation, which can be tailored by the PPDO to PCL weight ratio, as well as an excellent thermally induced dual-shape effect. PDC can be synthesized by co-condensation of two oligomeric macrodiols (PCL-diol and PPDO-diol) using aliphatic diisocyanates as coupling agent. Here, we investigated whether different morphologies could be obtained for PDCs synthesized from identical oligomeric macrodiols (PCL-diol with Mn = 2000 g·mol-1 and PPDO-diol with Mn = 5300-5500 g·mol-1) with 2, 2(4), 4-trimethyl-hexamethylene diisocyanate (TMDI) and 1, 6-hexamethylene diisocyanate (HDI), respectively. More specifically, atomic force microscopy (AFM) was utilized for an investigation of the surface morphologies in solution casted PDC thin films in the temperature range from 20 °C to 60 °C. The results obtained in differential scanning calorimetry (DSC) and AFM demonstrated that different morphologies were obtained when TMDI (PDC-TMDI) or HDI (PDC-HDI) were used as linker. PCL related crystals in PDC-HDI were more heterogeneous and less ordered than those in PDCTMDI, while HDI resulted in a larger degree of crystallinity than TMDI. This research provides some new suggestions for choosing a suitable coupling agent to tailor the required morphologies and properties of SMPs with crystallizable switching segments.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wischke, C., Neffe, A. T. and Lendlein, A., Adv. Polym. Sci. 226, 177 (2010).CrossRefGoogle Scholar
Julich-Gruner, K. K., Löwenberg, C., Neffe, A. T., Behl, M. and Lendlein, A., Macromol. Chem. Phys. 214, 521 (2013).CrossRefGoogle Scholar
Kratz, K., Madbouly, S. A., Wagermaier, W. and Lendlein, A., Adv. Mater. 23, 4058 (2011).CrossRefGoogle Scholar
Yakacki, C. M., Shandas, R., Safranski, R. D., Ortega, A. M., Sassaman, K. and Gall, K., Adv. Funct. Mater. 18, 2428 (2008).CrossRefGoogle Scholar
Kulkarni, A., Reiche, J., Hartmann, J., Kratz, K. and Lendlein, A., Eur. J. Pharm. Biopharm. 68, 46 (2008).CrossRefGoogle Scholar
Lendlein, A. and Langer, R., Science 296, 1673 (2002).CrossRefGoogle Scholar
Kratz, K., Habermann, R., Becker, T., Richau, K., and Lendlein, A., Int. J. Artif. Organs 34, 225 (2011).CrossRefGoogle Scholar
N’Goma, P. Y., Radke, W., Malz, F., Ziegler, H. J., Zierke, M., Behl, M. and Lendlein, A., Int. J. Artif. Organs 34, 110 (2011).CrossRefGoogle Scholar
Kratz, K., Voigt, U., and Lendlein, A., Adv. Funct. Mater. 22, 3057 (2012).CrossRefGoogle Scholar
Feng, Y., Behl, M., Kelch, S. and Lendlein, A., Macromol. Biosci. 9, 45 (2009).CrossRefGoogle Scholar
Kojio, K., Fukumaru, T., Furkawa, M., Macromolecules 37, 3287 (2004).CrossRefGoogle Scholar
Hojabri, L., Kong, X., Narine, S. S., Biomacromelcules 10, 884 (2009).CrossRefGoogle Scholar
Seretoudi, G., Bikiaris, D. and Panayiotou, C., Polymer 43, 5405 (2002).CrossRefGoogle Scholar
Nagata, M., Machida, T., Sakai, W. and Tsutsumi, N., Macromolecules 31, 6450 (1998).CrossRefGoogle Scholar
Lyoo, W. S., Kim, J. H., Yoon, W. S., Ji, B. C., Choi, J. H. and Cho, J., Polymer 41, 9055 (2000).CrossRefGoogle Scholar
Jiang, S., Ji, X., An, L. and Jiang, B., Polymer 42, 3901 (2001).CrossRefGoogle Scholar
Bhattarai, N., Kim, H. Y, Cha, D. I., Lee, D. R. and Yoo, D. I., Polymer 43, 5405 (2002). Eur. Polym. J., 39, 1365(2003).Google Scholar
Wang, L., Wang, X., Zhu, W., Chen, Z., Pan, J. and Xu, K., J. Appl. Polym. Sci. 116, 1116 (2010).CrossRefGoogle Scholar
Nöchel, U., Reddy, C. S., Uttamchand, N. K., Kratz, K., Behl, M. and Lendlein, A., Eur. Polym. J. (2013) DOI 10.1016/j.eurpolymj.2013.01.022.Google Scholar
Mareau, V. H. and Prud’homme, R. E., Macromolecules 38, 398 (2005).CrossRefGoogle Scholar