Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:03:02.463Z Has data issue: false hasContentIssue false

Influence of dopant nature on the TCO properties of ZnO:M (M=Al, Ga, Sn, Si, Ge) thin films

Published online by Cambridge University Press:  18 August 2011

J. Clatot
Affiliation:
LRCS, 33 rue St Leu, 80039 Amiens, France
G. Campet
Affiliation:
CNRS, Université de Bordeaux, ICMCB, 87 av. du Dr. Schweitzer, Pessac, F-33608 France
M. Jean
Affiliation:
Institut des Matériaux, Université de Rouen, LASTSM, BP12, 76801 Saint Etienne du Rouvray Cedex, France
M. Nistor
Affiliation:
National Institute for Lasers, Plasmas and radiation Physics, L22, PO Box MG-36, 77125 Bucharest-Magurele, Romania
A. Rougier
Affiliation:
LRCS, 33 rue St Leu, 80039 Amiens, France
Get access

Abstract

Aiming at clarifying the opto-electronic properties of ZnO based n-type Transparent Conducting Oxides, TCOs, properties of ZnO thin films are studied as a function of cationic doping. In addition to commonly reported, Al and Ga trivalent dopant, similar performances are reported for Si doping. In the visible region, ZnO:Si (3 %) thin film exhibit a transmittance higher than 80 % for a resistivity as low as 8x10-4 Ω.cm when grown at 100 °C under 1.0 Pa oxygen pressure. The influence of tetravalent cations as dopant is also investigated through Sn and Ge additions. It shows that not only the oxidation state plays a role but also the cation nature. Indeed, ZnO:Sn thin films are insulating whereas the ZnO:Ge thin films are conductive with resistivity values higher than the ones of ZnO:Si thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baraton, M.-I., Int. J. Nanotechnol., Vol. 6, No. 9 (2009) 776784 Google Scholar
2. Ginley, D.S., Hosono, H., Paine, D.C. (Eds.), Handbook of Transparent Conductors, Springer, New York 2010.Google Scholar
3. Triboulet, R., Perrière, J., Progress in Crystal Growth and Characterization of Materials, 47 (2003) 65138 Google Scholar
4. Tang, Z.K., Yu, P., Wang, G.K.L., Kawasaki, M., Ohtomoto, A., Koinuma, H., Segawa, Y., Solid State Comm., 103 (1997) 459 Google Scholar
5. Shimizu, M., Shiosaki, T., Kawabata, A., Journal of Crystal Growth, 57 (1982) 94 Google Scholar
6. Jin, Z.-C., Hamberg, I. and Granqvist, C.-G., J. Appl. Phys., 64(10) (1988) 5117 Google Scholar
7. Assunção, V., Fortunato, E., Marquesa, A., Águasa, H., Ferreira, I., Costa, M. E. V. and Martins, R., Thin Solid Films, 427 (2003) 401 Google Scholar
8. Clatot, J., Campet, G., Zeinert, A., Labrugère, C., and Rougier, A., Appl. Surf. Science, 257(12), (2011) 5181 Google Scholar
9. Clatot, J., Campet, G., Zeinert, A., Nistor, M., Labrugère, C., and Rougier, A., Solar Energy Mater. and Solar Cells, 10.1016/j.solmat.2011.04.006.Google Scholar
10. Tauc, J., ‘Optical Properties of Solids’, vol. 22 ed Abeles, F. (Amsterdam: North Holland) 903 Google Scholar
11. Burstein, E., Phys Rev., 93 (1954) 632 Google Scholar
13. Kim, C. C., Garland, J. W., Abad, H., and Raccah, P. M., Phys. Rev. B, 45 (1992) 11749 Google Scholar
14. Mergel, D. and Qiao, Z., J. Phys. D: Appl. Phys. 35 (2002) 794 Google Scholar
15. Nistor, M., Gherendi, F., Mandache, N.B., Hebert, C., Perrière, J., Seiler, W., J. Appl. Phys., 106 (2009) 103710 Google Scholar
16. Stjerna, B., Granqvist, C.G., Seidel, A., Häggström, L., J. appl. phys., 68 (1990) 6241 Google Scholar
17. Young, D. L., Hua-Chi Cheng, D. L., Tung, Yen-Ting, Lin, Chung-Kwei, Thin Solid Films 517 (2008) 1032.Google Scholar
18. Tsay, Chien-Yie, Cheng, Hua-Chi, Tung, Yen-Ting, Tuan, Wei-Hsing, Lin, Chung-Kwei, Thin Solid Films 517 (2008) 1032.Google Scholar
19. Vaezi, M.R., Sadrnezhaad, S.K., Mat. Sci.. and Eng. B 141 (2007) 23.Google Scholar