No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Dental remineralization may be achieved by mediating the interactions between tooth surfaces with free ions and biomimetic peptides. We recently developed octuplet repeats of aspartate-serine-serine (DSS-8) peptide, which occurs in high abundance in naturally occurring proteins that are critical for tooth remineralization. In this paper, we evaluated the possible role of DSS-8 in dentin remineralization. Human dentin specimens were demineralized, exposed briefly to DSS-8 solution, and then exposed to concentrated ionic solutions that favor remineralization. Dentin nano-mechanical behaviors, hardness and elastic modulus, at various stages of treatment were determined by nanoindentation. The phase, microstructure and morphology of the resultant surfaces were characterized using grazing incidence X-ray diffraction, variable pressure scanning electron microscopy, and atomic force microscopy, respectively. Nanoindentation results show that DSS-8 remineralization effectively improves the mechanical and elastic properties of native dentin. Moreover, the hardness and elastic modulus for the DSS-8 treated dentin were significantly higher than surfaces remineralized without DSS-8.